Функции костно-мышечной системы человека. Костно-мышечная система

30.04.2019

Костно-мышечная система.

Правильно сформированный, хорошо функционирующий опорно-двигательный аппарат – одно из основных условий полноценного развития ребёнка. К моменту рождения его структурная дифферен­цировка далеко не закончена. Очень высокие темпы роста и пере­стройки, в частности, костной ткани в раннем детстве, требуют по­стоянного поступления:

2) витаминов

3) кальция, фосфора и других микроэлементов, а также

4) интенсивного кровоснабжения

5) бесперебойной и безошибочной работы ферментных систем са­мой кости и других органов.

Осуществляются эти процессы в крайне трудных условиях:

  1. ограниченного возрастом питания
  2. функционального несовершенства большинства органов
  3. недостаточной центральной и нейроэндокринной регуляции про­цессов обмена.

Функционирование костно-мышечной системы во многом зависит от состояния нервной системы, которая функционально и морфоло­гически неразвита, часто травмирована внутриутробно или в родах.

Всё это создаёт особую уязвимость опорно-двигательного аппарата в раннем детстве, способствуя возникновению патологических про­цессов, последствия которых часто трудно поправимы. Кроме того синдромы повреждения костей, мышц, суставов могут также сопро­вождать разные острые и хронические инфекции, патологию почек и печени, эндокринные расстройства.

Анатомо-физиологические особенности и семиотика поражения мышечной системы у детей.

Мышечная ткань (имеется в виду скелетная мышечная ткань) раз­вивается из среднего зародышевого листка (мезодермы) на

3-4 нед. эмбриогенеза.

К рождению мускулатура развита сравнительно слабо. Так у ново­рождённых относительная масса мышц составляет всего

20 – 23%. В период прорезывания зубов — 16,6%; в 7 лет 22%; у взрослых примерно 36%.

Общее нарастание массы мышечной ткани в процессе постнаталь­ного развития является 37-кратным, в то время как масса скелета увеличивается только в 27 раз. Ни одна другая ткань не даёт такого прироста после рождения.

Отмечается и особенность в распределении мышечной ткани у но­ворождённых и детей более старшего возраста. У новорождённых основная её масса приходится на мышцы туловища (40%), в то время как в другие периоды – на мышцы конечностей.

К морфологическим особенностям мышечной системы у детей надо отнести:

1) меньшую толщину мышечных волокон (в 5 раз)

2) относительно большее количество рыхлой интертициальной ткани и сосудов

3) и большее количество округлой формы ядер как в клетках самих мышц, так и в межуточной соединительной ткани

Для каждой мышцы характерно более или менее стабильное число мышечных волокон, которое устанавливается в первые месяцы по­сле рождения и сохраняется до взрослого состояния.

Рост мышц, сопровождающий постэмбриональное развитие орга­низма, связан с удлинением и утолщением имеющихся мышечных волокон, рост их несущественен.

Мышцы удлиняются за счёт роста в зонах перехода мышечных во­локон в сухожилие, где концентрируется наибольшее количество ядер. Параллельно росту миофибрил количество ядер на единицу площади ткани уменьшается (от 45 у новорождённых, до 5 у

17-летнего подростка). Параллельно идёт и формирование соедини­тельно-тканного каркаса мышц, которая достигает окончательной степени дифференцировки к 8-10 годам.

С возрастом детей меняется и химический состав мышц: нарастает количество плотных веществ, снижается количество воды, количе­ство глобулинов остаётся почти без изменений, миостромин про­грессивно нарастает, уменьшается количество гликогена, молочной кислоты, нуклеиновых кислот, относительно массы мышечной ткани. Важной количественной особенностью является наличие в мышцах детей фетальной формы миозина – это фермент активи­рующий превращение АТФ в АДФ и выделение энергии, необходи­мой для сокращения мышц.

По мере роста ребёнка фетальный миозин исчезает.

Иннервационный аппарат скелетных мышц ко времени рождения в основном сформирован, в первые годы жизни продолжается его дифференцировка, происходит миелинизация нервных волокон.

В функциональном отношении мышцы ребёнка характеризуются разнообразными особенностями:

1) так электровозбудимость нервно-мышечного аппарата у детей в период новорождённости по сравнению с детьми старшего воз­раста снижена.

2) Механическая же мышечная возбудимость у новорождённых не­сколько повышена. Для них характерен хоботковый рефлекс, на­личие карпопедального спазма, тонических судорог в кисти, стопе. В более позднем возрасте эти симптомы говорят о патоло­гии, в частности о тетании связанной с гипокальциемией, алко­лозе.

3) У детей первых месяцев жизни отмечается повышенный тонус мышц не исчезающий даже во время сна, так называемая физио­логическая гипертония, она связана с особенностями функции ЦНС. Особенностью новорождённых является и преобладание тонуса мышц сгибателей, благодаря чему во внутриутробном пе­риоде возникает специфическая поза плода и после рождения дети обычно лежат с согнутыми руками и ногами. Постепенно мышечная гипертония исчезает в 2-2,5 мес. на верхних и в 3-4 мес. на нижних конечностях, что имеет важное значение для раз­вития координированных движений рук.

Двигательная способность мышц у ребёнка сначала появляется у мышц шеи и туловища, а после уже мышц конечностей. Мышечная сила у детей с возрастом отчётливо нарастает, как правило правая рука сильнее левой.

Мышечная сила у мальчиков несколько больше, чем у девочек.

Считается, что богатое кровоснабжение и интенсивный обмен спо­собствуют быстрому вымыванию из мышц молочной кислоты, по­этому функциональная активность мышц детей высокая, дети очень подвижны и устают меньше, чем взрослые.

Для нормального развития мышц у детей и подростков необходима умеренная физическая нагрузка.

Как гипокинезия, так и чрезмерные нагрузки неблагоприятны для физического развития ребёнка.

Степень развития мускулатуры зависит от целого ряда экзогенных и эндогенных причин.

У худых детей, особенно у детей с микросоматотипом мускулатура развита всегда значительно слабее, чем у детей с макросоматотипом.

У детей грудного возраста, у детей очень тучных (с ожирением) мускулатура также развита относительно слабо.

Некоторое общее недоразвитие мускулатуры чаще всего встречается у детей, которые в течение многих лет прикованы к постели в силу какого-либо хронического заболевания, а также у детей не зани­мающихся спортом, ведущих малоподвижный образ жизни и т.д.

В резко выраженных случаях слабого развития мышц можно гово­рить о мышечной атрофии.

Атрофические состояния наиболее резко выражены при различных формах прогрессирующих мышечных атрофий, при которых разви­вается атрофия и гипотония мышц в определённой последователь­ности.

Выраженная атрофия мышц отмечается при церебральных и спино­мозговых параличах. Типичной для спиномозгового паралича явля­ется атрофия мышц при полиомиелите (это вирусная нейроинфекция с поражением двигательных нейронов спинного мозга), когда на­блюдается выраженная атрофия мышц какой-либо группы или мышц всей конечности.

Периферический паралич носит вялый характер, назыв. «вялые па­раличи». При центральных параличах мышечная атрофия не столь выражена, а сам паралич носит спастический характер. Это детский церебральный паралич.

Обратное состояние – гипертрофия тех или иных мышечных групп – чаще всего является рабочей гипертрофией. Она может наблюдаться у детей, занимающихся какой-либо физической работой или, напри­мер, в результате длительной регидности отдельных мышц. От ис­тинной гипертрофии мышц надо отличать псевдогипертрофию, ко­гда заместительное отложение жира симулирует картину хорошо развитых мышц.

Тонус мышц. Играет важную роль в жизнеобеспечении организма. О тонусе мышц судят по консистенции мышечной ткани, опреде­ляемой на ощупь, и по степени того сопротивления, которое возни­кает при пассивных движениях.

Общая гипотония всей мышечной системы встречается при: рахите, хорее, врождённой миопатии.

Ограниченная гипотония обычно зависит от заболевания перифери­ческого нейрона (полиомиелит, неврит).

Общая гипертония возникает в результате поражения центрального нейрона (остаточные явления после энцефалита, родовой травмы, недоразвития коры, гидроцефалии).

В раннем детстве гипертония и гипотония часто наблюдаются также при острых и хронических расстройствах питания и пищеварения, и при некоторых инфекциях (столбняк, менингит).

Причина ограниченной гипертонии может лежать в самих мышцах – при миозите. Усиленное напряжение мышц стенок живота типично для перитонита.

Анатомо-физиологические особенности и семиотика поражения костной системы.

Костная ткань также развивается из мезенхимы – 2 способами:

1) непосредственно из мезенхимы (дермальный или соединитель­нотканный остеогенез).

2) На месте ранее заложенного хряща (через стадию хряща – хонд­ральный остеогенез). Развитие кости непосредственно из мезен­химы без предварительного преобразования в хрящ, характерно для образования грубоволокнистой костной ткани как а) покров­ных костей черепа; б) лицевых костей; в) диафиза ключицы.

Первичную основу скелета составляет хрящевая ткань, которая по­степенно замещается костной, причём костеобразование происходит как внутри хрящевой ткани (эндохондральное окостенение), так и на поверхности её (перихондральное окостенение). Эндохондральному окостенению способствует давление тяжести тела на скелет, пери­хондральному – действие тяги сухожилий и мышц. Идут они почти одновременно.

У детей раннего возраста трубчатые кости заполнены активно функ­ционирующим красным костным мозгом и состоят из нескольких частей – диафиза и эпифизов, соединённых между собой прослойкой необызвествлённого хряща. К моменту рождения ребёнка диафизы трубчатых костей уже представлены костной тканью, в то время как подавляющее большинство эпифизов, все губчатые кости кисти и часть губчатых костей стопы состоят ещё только из хрящевой ткани. К рождению намечаются лишь точки окостенения в центральных участках эпифизов бедренной и большеберцовой костей, в таранной, пяточной и кубовидных костях, в телах всех позвонков и их дугах, другие точки окостенения появляются уже после рождения. Их по­следовательность появления достаточно определённая.

Совокупность имеющихся у ребёнка точек окостенения представ­ляет собой важную характеристику уровня его биологического раз­вития и называется костным возрастом.

Рост трубчатых костей в длину до появления в эпифизах точек око­стенения осуществляется за счёт развития ростковой хрящевой ткани, образующей концевые отделы костей.

После появления точек окостенения в эпифизах, рост происходит за счёт развития ростковой хрящевой ткани в метафизарной зоне, а эпифизы увеличиваются в результате развития ростковой хрящевой ткани, окружающей соответствующие точки окостенения.

В метафизарных зонах роста костей имеется очень богатое крово­снабжение и замедленный ток крови, обеспечивающие активное костеобразование, поэтому в этих местах легко оседают микроорга­низмы, в результате чего у детей 1 года жизни нередко возникает метафизарный остеомиелит. В возрасте 2-3 лет, когда формируются ядра окостенения в эпифизах, остеомиелит чаще бывает эпифизар­ным, у взрослых – диафизарным.

Одновременно диафизы длинных трубчатых костей увеличиваются и в поперечнике за счёт костеобразовательного процесса со стороны надкостницы, при этом со стороны костномозгового пространства кортикальный слой подвергается постоянной резорбции. Следст­вием этих процессов является увеличение поперечника кости и уве­личение объёма костномозгового пространства, которое при рожде­нии очень мало.

Костная ткань новорождённых имеет грубоволокнистое сетчатое строение. Немногочисленные костные пластинки располагаются не­правильно, Гаверсовы каналы представлены неупорядоченно раз­бросанными полостями. Надкостница толстая, особенно хорошо вы­ражен её внутриутробный слой за счёт которого идут процессы роста кости в поперечнике, чем объясняется большая частота у детей 1 года поднадкостничных переломов – по типу «зелёной веточки». Кости детей бедны минеральными солями, богаты водой и крове­носными сосудами. Поэтому кости ребёнка мягкие, гибкие, не обла­дают достаточной прочностью, легко поддаются искривлению и приобретают неправильную форму при сдавлении и сгибании, при систематическом неправильном положении: на руках, кровати.

Недопустимо рано сажать ребёнка, ставить на ножки. В то же время сопротивление детской кости травме благодаря её эластичности больше.

Энергия роста и регенерации костей в детском возрасте значительно больше, чем у взрослых, поэтому для заживления переломов у детей требуется более короткий срок. По мере роста ребёнка происходит перестройка кости с заменой волокнистой, сетчатой структуры на пластинчатую. Уменьшается количество воды, увеличивается золь­ный остаток. Хрящевая ткань постепенно замещается костной тка­нью. В процессе костеобразования и перемоделирования костной ткани выделяют 3 стадии:

1 стадия остеогенеза – образование белковой основы костной ткани – костной матрицы. Для этого процесса необходимо обеспечение ре­бёнка белком, коллоидом, витаминами А, С, гр. В. В этом процессе принимают участие гормоны: тироксин, соматомидины, активиро­ванный соматотропный гормон гипофиза, инсулин, парат-гормон.

2 стадия – минерализация костной матрицы, т.е. отложение мине­ральных солей. Для этой стадии решающее значение имеет обеспе­ченность организма кальцием, фосфором, микроэлементами (марга­нец, магний, цинк, медь), витамином «Д».

Течение этой стадии нарушается при развитии в организме ребёнка ацидоза. Обе эти стадии регулируются мышечным тонусом, а также движениями, поэтому в этот период очень важен массаж, гимна­стика, двигательная активность.

3 стадия остеогенеза – это процесс перемоделирования и постоян­ного самообновления кости, который регулируется паращитовид­ными железами и зависит от обеспеченности вит. «Д».

К 3-4 годам жизни кости ребёнка приобретают пластинчатое строе­ние и к 12 годам они уже не отличаются от костей взрослого чело­века.

Кости черепа . Черепная коробка ребёнка в отличие от взрослого раз­вита значительно больше, чем лицевой скелет. Это зависит от отсут­ствия у маленького ребёнка зубов и от слабого развития носа и его придаточных полостей.

Череп маленького ребёнка отличается следующими особенностями: он состоит из костей, отделённых друг от друга швами; в месте со­единения нескольких костей имеются промежутки, совершенно ли­шённые кости – роднички.

Боковые роднички (их 2): между затылочной, височной и теменной костью. Эти роднички в норме к моменту рождения закрыты, если они открыты, то это указывает либо на недоношенность ребёнка, либо на головную водянку.

Малый, или задний, родничок , лежащий между затылочной и темен­ными костями, закрывается также у большинства доношенных детей к рождению. Однако он примерно у 20 – 25 % новорожденных детей бывает открытым и закрывается в 3-4 недели.

Передний, или большой, родничок (между лобными и теменными костями) остаётся после рождения и у доношенного здорового ре­бёнка; величина его в норме 2-2,5х3 см. Размеры родничка опреде­ляются путём измерения расстояния между противоположными сто­ронами родничка. Измерять его по диагонали нельзя, т.к. в таком случае трудно решить, где кончается шов и начинается родничок. Позже родничок постепенно уменьшается и закрывается в норме к 1 году или к 1,5 годам.

Более позднее закрытие большого родничка может быть за счёт: ра­хита, гидроцефалии, микседемы. Преждевременное закрятие может быть: при микроцефалии (из-за недоразвития головного мозга) или в связи с преждевременным заращением черепных швов – кранеосте­нозом.

Надо обращать внимание и на другие свойства родничка: в норме родничок «дышит» – хорошо заметны колебания его поверхности одновременно с дыханием и пульсом ребёнка. При этом родничок остаётся на одном уровне с костями черепа.

При лихорадочных состояниях родничок обычно несколько выпячи­вается и сильнее пульсирует. А при значительном повышении внут­ричерепного давления (гидроцефалия, менингит) родничок выпячи­вается над уровнем костей, становится сильно напряжённым. Сле­дует помнить, что родничок может быть напряжённым и у здорового ребёнка во время крика.

При уменьшении внутричерепного давления (упадок деятельности сердца или обезвоживание всего организма в следствие потерь жид­кости при рвоте или поносе) родничок западает и оказывается ниже уровня костей.

Швы между костями черепа у здорового ребёнка хорошо прощупы­ваются лишь в периоде новорождённости. При ощупывании костей черепа здорового ребёнка над серединой ощущается твёрдость. По­датливость костей, прогибающейся как пергамент, — называется кра­ниотабес, что наблюдается при рахите. Особенно часто это встреча­ется на затылочных и теменных костях. Форма черепа в норме ок­руглая. У некоторых новорождённых наблюдается так называемая родовая опухоль в виде мягкой жестковатой припухлости кожи, за­висящая от серозного пропитывания мягких тканей и самопроиз­вольно рассасывающаяся в течение нескольких дней. Другого рода опухоль может образоваться не черепе в результате более тяжёлой родовой травмы: это кровоизлеяние под надкостницу – кефалогема­тома. От родовой опухоли она отличается тем, что не переходит за швы, тогда как родовая опухоль идёт и через швы.

При рахите также м.б. изменение формы головы – четырёхугольная форма (увеличение лобных и теменных бугров), ягодицеобразная голова, башенный череп.

Позвоночник . Позвоночник у новорождённого ребёнка лишён фи­зиологических искривлений; он почти прямой или вернее, имеет общую выпуклость кзади.

Когда ребёнок начинает держать голову, у него появляется шейный лордоз; позднее (на 6-м месяце), когда он начинает сидеть, форми­руется грудной кифоз; при обучении, ходьбе образуется поясничный лордоз.

Первое время эти изгибы непостоянны и при лежании ребёнка сгла­живаются. Боковое искривление позвоночника — называется ско­лиоз. Резкие степени сколиоза, также как и кифоза, у детей раннего возраста обычно встречаются при рахите.

У детей школьного и дошкольного возраста часто замечается ис­кривление позвоночника другой этиологии – так называемые «при­вычные», или «школьные» кифо-сколиозы.

Образование таких привычных или «школьных» кифо-сколиозов за­висит от недостаточного тонуса и отчасти от недостаточного разви­тия мускулатуры вообще и мышц спины в частности. Это наблюда­ется как на почве позднего рахита, так и при неправильном образе жизни. При данных патологиях рекомендуется использовать кровать с ортопедическим матрасом , которая замедляет процесс деформации позвоночника, а также снижает с него нагрузку.

Грудная клетка у ребёнка имеет ряд особенностей. У новорождён­ного и в возрасте до 1,5-2 лет она представляется по форме бочкооб­разной – поперечный размер почти равен переднезаднему. В даль­нейшем она приобретает форму цилиндра и в школьном возрасте форму усечённого конуса.

У ребёнка на первом году жизни рёбра отходят от позвоночника почти под прямым углом и имеют горизонтальное направление. Та­кое строение грудной клетки ведёт к затруднению вдыхания у ма­леньких детей – оно возможно только за счёт опускания вниз диа­фрагмы, рёбра же находятся всё время в положении как бы макси­мального вдоха. При рахите возможны следующие деформации руд­ной клетки:

«куриная грудь» , когда грудь как бы сдавлена с боков с выступаю­щей вперёд грудиной. Другая деформация –

«грудь сапожника» . В таких случаях грудина, особенно мечевидный отросток, как бы вдавлен или запал.

При увеличении сердца на почве врождённых или рано приобретен­ных пороков сердца развивается сердечный горб – выбухание тех отделов грудной клетки, которые прикрывают снаружи сердце.

Рёберные чётки, как проявление рахита, формируются на месте пе­рехода костной ткани ребра в хрящ. Пальпируются примерно по па­растернальной линии.

Кости таза относительно малы у детей раннего возраста. Форма таза напоминает воронку. Рост костей таза относительно интенсивно происходит до 6 лет. С 6 до 12 лет имеет место относительная ста­билизация размеров таза, а в последующем у девочек – наиболее ин­тенсивное его развитие, у юношей – умеренный рост.

У детей первых месяцев жизни часто наблюдается кажущееся ис­кривление ног. Это никакого патологического значения не имеет и не связано с истинным искривлением конечностей, которое может быть при рахите (Х-, О- образные ноги) или при сифилисе, а зависит от своеобразного развития мягких тканей.

Зубы . У новорождённых зубов нет. Они встречаются у них как ис­ключение и обычно быстро выпадают. Прорезывание зубов начина­ется у здоровых детей в возрасте 6-7 месяцев. Одноимённые зубы на каждой половине челюсти прорезываются одновременно. Нижние зубы, как правило, прорезываются раньше. Чем верхние. Исключе­нием являются только боковые резцы – здесь верхние зубы появля­ются раньше нижних. У годовалого ребёнка д.б. 8 зубов. В молоч­ном прикусе различают 2 периода: 1 до 3-3,5 лет прикус ортогнати­ческий, 2 – от 3,5 до 6 лет прикус прямой.

Период сохранения молочных зубов и появления постоянных носит название периода сменного прикуса. Все молочные зубы прорезы­ваются примерно к 2 годам и всего их 20.

Формула для расчёта молочных зубов n – 4, где n – число месяцев жизни ребёнка.

Первые постоянные зубы прорезываются примерно в 5-5,5 лет. Это первые моляры. Затем последовательность появления постоянных зубов, примерно, такая же, как и при появлении молочных. После смены молочных зубов на постоянные в возрасте примерно 11 лет, появляются вторые моляры. Третьи моляры (зубы мудрости) проре­зываются в возрасте 17-25 лет, а иногда и позже.

Для ориентировочной оценки постоянных зубов независимо от пола можно использовать формулу:

Х (число постоянных зубов) = 4n – 20.

Формирование как молочного, так и постоянного прикуса у детей является важным показателем уровня биологического созревания ребёнка. Поэтому в оценке биологической зрелости детей использу­ется понятие «зубной возраст». Существует таблица по оценке уровня возрастного развития по «зубному возрасту».

Особое значение имеет определение зубного возраста в оценке сте­пени зрелости детей дошкольного и младшего школьного возраста, где другие критерии использовать сложнее.

(Visited 11 times, 1 visits today)

On-line консультации врачей


Мышцы

Движения человека обеспечиваются опорно-двигательным аппаратом, который состоит из пассивной части - кости, связки, суставы и фасции, и активной части - мышц.

Различают три основных типа мышц. Первый - это поперечно-полосатые мышцы, которыми управляет головной мозг. Сокращения этих мышц называют произвольными, т. к. они подчинены воле. Вместе с костями и сухожилиями они отвечают за все наши движения.

Второй - это гладкие мышцы, получившие это название потому, что именно так они выглядят под микроскопом. Они отвечают за непроизвольные движения внутренних органов, например, мочевого пузыря или кишечника.

И третий - это сердечная мышца, из которой почти целиком состоит сердце. Мышца сердца не прекращает свою ритмическую работу в течение всей жизни. Нервная система регулирует частоту, силу, ритмичность сокращений сердца.

Поперечно-полосатые мышцы широко распределены по всему нашему телу, даже у новорожденного младенца составляя значительную часть веса - до 25%. Они управляют движениями самых разных частей скелета - от крохотной стремянной мышцы, двигающей стремечко в ухе, до большой ягодичной, которая образует ягодицу и командует тазобедренным суставом. Поперечно-полосатые мышцы подразделяют на мышцы туловища, головы и шеи, верхних и нижних конечностей.

Мышцы крепятся к скелету сухожилиями. Ближний к центру тела конец сухожилия называют местом прикрепления мышцы, и он короче сухожилия на другом конце. Обычно одним сухожилием мышца крепится к ближнему концу сустава, а другим - к дальнему, благодаря чему, сокращаясь, она приводит его в движение.

Поперечно-полосатую мышцу можно представить как ряд собранных воедино пучков мышечных волокон. Наименьшими из них, и главным рабочим элементом мышцы, являются актиновые и миозиновые нити. Они очень тонкие, увидеть их можно только под электронным микроскопом. Состоят из белка, который иногда называют сократительным. Когда все миозиновые нити скользят вдоль актиновых, длина мышцы сокращается.

Все эти нити собраны в пучки, или миофибриллы. Между ними хранятся запасы мышечного горючего в виде гликогена и расположены клеточные генераторы энергии, или митохондрии, в которых сгорает кислород и поступившее с пищей горючее, вырабатывая энергию. Миофибриллы собраны в более крупные пучки или мышечные волокна. Это уже настоящие мышечные клетки с ядром, расположенным по внешнему краю.

Мышечные волокна тоже собраны в пучки в оболочке из соединительной ткани, похожей на изоляцию медных проводков в толстом кабеле. Небольшая мышца может состоять лишь из нескольких пучков, тогда как крупная - из многих сотен.

В такую же волокнистую оболочку сродни изоляционному покрытию многожильного кабеля заключена и вся мышца. В гладких мышцах мы не увидим столь геометрически упорядоченной структуры нитей и волокон, но и они сокращаются благодаря скольжению нитей. В то же время, сердечная мышца выглядит под микроскопом так же, как поперечно-полосатая, с той разницей, что отдельные пучки волокон соединены в ней перемычками.

От моторных (управляющих движениями) участков коры головного мозга нервы проходят по спинному мозгу и разветвляются на множество контролирующих мышцы окончаний. Без подаваемых нервом сигналов мышца теряет способность сокращаться и постепенно атрофируется.

Нервы «подключены» к мышечным волокнам в определенных участках поверхности. Электрическая сила поступающего в мышцу нервного импульса ничтожна по сравнению с происходящими в ней электрическими изменениями, поэтому нужен усилитель. Подача сократительного импульса происходит в моторном окончании, где двигательный нерв стыкуется с мышечным волокном. Проходящий по нерву электрический импульс высвобождает вещество ацетилхолин, который заставляет мышцу сокращаться.

Скольжение миозиновых нитей по актиновым - это сложный процесс, в ходе которого между ними непрерывно образуется и распадается ряд химических соединений. Для этого нужна энергия, которая вырабатывается при сгорании в митохондрии кислорода и поступившего с пищей горючего. Энергия откладывается про запас и передается в виде вещества АТФ (аденозинтрифосфата), богатого фосфатами. Сокращение мышцы начинается с притока кальция в мышечные клетки по множеству микроканальцев, протекающих между миофибриллами.

Кроме того, в мышце имеются еще две группы волокон. Одна регистрирует cилу сокращения, а другая, находящаяся внутри сухожилий, управляет ее растяжением. Эта ключевая для управления мышечной деятельности информация передается обратно в головной мозг.

Мышцы имеют различную форму. Они бывают: двуглавые, трехглавые, четырехглавые, квадратные, треугольные, пирамидальные, круглые, зубчатые, камбаловидные мышцы. По направлению волокон различают прямые, косые, круговые мышцы. В зависимости от функций мышцы делят на сгибатели, разгибатели, приводящие, отводящие, вращающие, напрягающие, мимические, жевательные, дыхательные и др.

Поперечно-полосатые мышцы имеют вспомогательный аппарат: фасции, фиброзно-костные каналы, синовиальные влагалища и сумки. Мышцы обильно снабжаются кровью благодаря большому количеству кровеносных сосудов, имеют развитые лимфатические сосуды.

Мышцы, выполняющие одно и то же движение, называют синергистами, а противоположные движения - антагонистами. Действие каждой, мышцы может происходить только при одновременном расслаблении мышцы-антагониста, такая согласованность носит название мышечной координации.

Сила мышц зависит от количества миофибрилл в мышечных волокнах: в хорошо развитых мышцах их больше, в слабо развитых меньше. Систематическая тренировка, физическая работа, при к-рых увеличиваются миофибриллы в мышечных волокнах, приводят к возрастанию мышечной силы.

Заболевания мышечной системы.

Опухоли в мышцах встречаются сравнительно редко.

Среди пороков развития мышц встречаются нарушения развития диафрагмы с последующим образованием диафрагмальных грыж. Омертвение мышц может возникнуть в результате нарушения обмена веществ, воспалительных процессов, травмы, воздействия близко расположенной опухоли, а также при закупорке крупных артерий.

В мышечной ткани могут развиваться разнообразные по происхождению дистрофические процессы, в т. ч. липоматоз (избыточное отложение жира), наблюдающийся, в частности, при общем ожирении.

Отложение солей кальция в мышцах наблюдается как проявление общего или местного нарушения минерального обмена.

Атрофия мышц выражается в том, что их волокна постепенно становятся тоньше. Причины атрофии разнообразны. Как физиологическое явление атрофия мышц может быть у пожилых людей в связи с их малой физической активностью. Иногда атрофия развивается из-за нарушения функции мышц на почве заболеваний нервной системы. Атрофия мышц может развиваться также при обездвиженности больного, связанной с тяжелой травмой или заболеваниями суставов, при тяжелых истощающих заболеваниях и др.

Гипертрофия (увеличение мышечной массы) мышц в основном носит физиологический, рабочий характер. Может наблюдаться при сильных физических нагрузках, а также при некоторых наследственных болезнях.

К распространенным заболеваниям мышечной системы относится так наз. асептическое воспаление мышц - миозит. Поражения мышц, связанные с воспалительным процессом, встречаются при ряде системных (Коллагеновые болезни, Ревматизм) и инфекционных (Миокардит) заболеваний.

Развитие гнойного воспаления - абсцесса - относится к тяжелым формам поражения мышечной системы, требующим хирургического лечения.

Повреждения мышц бывают в виде ушибов или разрывов; те и другие проявляются болезненной припухлостью, уплотнением в результате кровоизлияния.

Открытые повреждения мышц (раны) сопровождаются, как правило, значительным наружным кровотечением, что требует срочной госпитализации пострадавшего.

2018-06-12

Употребление этой пряности может защитить печень
Последние исследования показали, что мускатный орех полезен для печени

Скелетная система

Костно-мышечная система защищает жизненно важные органы и отвечает за движения тела. Подвижность костно-мышечной системы зависит от взаимодействия между , приводящими в движение прикрепленные к ним кости в области суставов. Суставы соединяют две или более костей и создают скользящие поверхности, по которым могут двигаться кости. Мышечную функцию контролируют произвольные и непроизвольные импульсы, идущие из двигательной области коры головного мозга в ЦНС. Спинномозговые рефлексы регулируют мышечный тонус на том уровне, где из спинного мозга выходят нервные окончания.

Мышечная система

Скелет состоит из различных костей и суставов, которые обеспечивают максимальную подвижность при сохранении равновесия.

Существует два типа костей :

  • кортикальная компактная кость (80%) - плотная кость, оказывающая сопротивление вращательным силам, является главным компонентом трубчатых костей;
  • губчатая кость (20%) оказывает сопротивление сжимающим силам и расположена на конце трубчатых костей. Позвоночник в основном состоит из губчатых костей.

Существует два типа суставов:

  • синовиальный (истинный) сустав (например, ) позволяет совершать экстенсивные движения. Его стабильность поддерживают связки и мышцы, которые через него проходят;
  • сустав, состоящий из волокнистого хряща (например, крестцово-подвздошный), обладает стабильностью, но ограничивает движения скелета.

ПАТОФИЗИОЛОГИЯ И ЗАБОЛЕВАНИЯ КОСТНО-МЫШЕЧНОЙ СИСТЕМЫ

Остеопороз

Кость позвонка человека, больного остеопорозом. Сканирующий электронный микроскоп

Истончение нормальной кости с возрастом. Это заболевание также может развиться в молодом возрасте из-за нарушения функции яичников, возникшего естественным или хирургическим путем, из-за лекарств (например, ) либо быть следствием образа жизни ( , ). Остеопороз часто выявляют у женщин и приводит к переломам предплечья, тазобедренного сустава и позвоночника. Возросшее число заболевших и умерших из-за остеопороза в Европе и Северной Америке отражает растущее число стареющего населения.

Заболевания костей

  • Могут вызывать переломы и боль
  • Остеопороз характеризуется изменением в количестве костной ткани
  • Остеомаляция характеризуется нехваткой минералов
  • Болезнь Педжета характеризуется образованием аномальных костей

Рис. 15.1 Остеопороз. (а) Микроснимок биоптата подвздошной кости, помещенного в смолу. Видны нормальные кортикальные и губчатые кости, обработанные методом серебрения, при котором кость, содержащая кальций, чернеет, (б) Микроснимок кости больного остеопорозом. При сравнении с микроснимком (а), который показывает костную массу здорового пациента того же возраста, видно, что кортикальная зона уже, а губчатая тоньше и отличается меньшей массой (предоставлено Alan Stevens, Jim Lowe).

Лучший способ установить риск перелома - определить плотность костей

Рис. 15.2 Возрастные изменения костной массы у мужчин и женщин.

При остеопорозе качество кости остается нормальным, но количество костной ткани уменьшается (рис. 15.1). Баланс между образованием (функция остеобластов) и резорбцией кости (функция остеокластов) влияет на увеличение или уменьшение массы костной ткани с течением времени. Массу костной ткани определяют совокупным эффектом этих одновременно идущих процессов. Она увеличивается от рождения до 30 лет у мужчин и у женщин (рис. 15.2), а затем медленно уменьшается, причем у женщин в период менопаузы это уменьшение происходит быстрее.

Как образование, так и резорбцию костной ткани можно установить с помощью гистоморфологического анализа биопсии костей или определить напрямую, используя маркеры образования и резорбции костей. Обычно отслеживают концентрацию Са2+ в сыворотке и гормон, регулирующий Са2+.

Остеомаляция и рахит

Остеомаляция - сравнительно редкое состояние костей, при котором в матрице новой кости уменьшается минерализация (рис. 15.3). У детей такая нехватка кальция может привести к нарушениям роста, деформациям и рахиту. Взрослые страдают от боли, проксимальной миопатии или переломов с незначительными повреждениями.

Рис. 15.3 Остеомаляция. Микроснимок отростка подвздошной кости, помещенного в акриловую смолу без предварительной декальцификации, взятый у пациента с остеомаляцией. Хорошо виден широкий участок лишенного минералов остеоида (красный цвет) и центральный участок кости, насыщенный минералами (черный цвет). Этот макет выполнен с помощью техники серебрения Kossa (предоставлено Alan Stevens, Jim Lowe).

Остеомаляция (размягчение костей) в основном возникает из-за недостатка . К биохимическим показателям относят нехватку кальция, вторичное увеличение концентрации паратиреоидного гормона и низкую концентрацию в плазме 25-гидроксивитамина D3. Также встречаются и другие, менее распространенные наследственные типы остеомаляции.

Основной источник витамина D - кожа, где он образуется благодаря фотохимической реакции. Витамин D также содержится в пище, особенно в молоке. Люди, не имеющие возможности загорать из-за климата, а также нуждающиеся в долгосрочном уходе в старости и не выходящие из-за этого на улицу, подвержены риску дефицита витамина D.

Болезнь Педжета

Рис. 15.4 Болезнь Педжета. Микроснимок фрагмента кости, помещенного в смолу, взят у пациента с активной болезнью Педжета. Наблюдается неконтролируемое рассасывание остеокластов (Ос) кости, а остеобласты (ОЬ) пытаются заполнить возникающие пустоты (предоставлено Alan Stevens, Jim Lowe).

Болезнь Педжета - состояние костей, при котором наблюдаются боль, скелетные деформации, неврологические осложнения или переломы. Это заболевание встречается в различных странах: оно распространено в Центральной Европе, Великобритании и Северной Ирландии, Австралии, Новой Зеландии и США, реже - в Африке, на Среднем и Дальнем Востоке и в Скандинавии.

При этой патологии присутствуют чрезмерная резорбция и образование костей (рис. 15.4). Заболевание проходит три фазы: остеолитическую, остеобластическую и бессимптомную. У одного пациента в одно и то же время могут наблюдаться все три фазы. Включения различных тел на гистопатологии позволяют сделать выводы о возможных вирусных причинах этой болезни.

Остеоартрит

Остеоартрит - самое распространенное заболевание суставов. Оно характеризуется утратой соединительных хрящей, деформацией и гипертрофией костей, склерозом субхрящевой кости и костной кистой. Возможные причины остеоартрита:

  • наличие анормального хряща или кости.

Самый характерный признак остеоартрита - прогрессирующая утрата хряща. Ранние биохимические изменения при остеоартрите включают: (1) уменьшение содержания в хряще гликозаминогликана (с низким содержанием , кератана сульфата и гиалуроновой кислоты); (2) увеличение количества энзимов, которые разрушают хрящ (металлопротеиназы матрикса); (3) увеличение содержания воды в суставе. Возросшая активность энзимов-металлопротеиназ частично отвечает за разрушение протеогликана и коллагена. В начале хондроциты стимулируются для увеличения числа хондролитов, а также синтезируют цитокины, например интерлейкин-1 и фактор некроза опухоли а. Естественно образующиеся протеины подавляют катаболические энзимы. Эти патофизиологические изменения вызывают локальную боль, которая сначала проходит, если снять с сустава нагрузку, но затем возвращается при малейшей нагрузке или движении. Характерная для воспалительного артрита неподвижность суставов минимальна и быстро проходит.

Ревматоидный артрит

Хроническое воспалительное заболевание, которое приводит к боли, опуханию и разрушению суставов. Им болеет 1% всего взрослого населения Земли. Развитие болезни приводит к разрушению суставов, деформации и значительной утрате трудоспособности.

Ревматоидный артрит - это хроническое воспаление синовиальной оболочки, которая выстилает сустав. Синовиальная оболочка воспалена, в поверхностном слое скапливаются полиморфноядерные лейкоциты, а под синовиальным слоем и глубоко в синовиальных тканях - одноядерные клетки (CD4+ Т-лимфоциты и плазмоциты). В дальнейшем наступает массивная синовиальная гипертрофия, которая сопровождается инвазией воспалительными и фибробластоподобными клетками. Сосудисто-волокнистая ткань (паннус) поражает и разрушает кость и хрящ. Медиаторы воспаления способствуют воспалению синовиальной оболочки, разрушению хряща и эрозии кости. В ревматоидном суставе образуются провоспалительные цитокины, включая ФНО-0С, IL-1, гранулоцитарно-макрофагальные колониестимулирующие факторы, IL-6 и другие хемокины. Кроме того, присутствуют противовоспалительные цитокины IL-4 и IL-10, которые могут подавлять воспалительные состояния. ФНО-a оказывает прямое воздействие на синовит, остеокласты и хондроциты. Знание этой особенности позволило разработать специальную биологическую терапию, которая учитывает действие этих цитокинов (см. далее).

Ревматоидный артрит имеет отношение к множеству клинических синдромов, не связанных с соединительной тканью, включая васкулит, подкожные узлы, интерстициальный пневмосклероз, перикардит, повторяющийся мононеврит (васкулит периферических нервов), синдром Шегрена (воспаление слюнных и слезных желез), синдром Фелти (спленомегалия и лейкопения) и воспаления глаз.

Подагра и другие виды кристаллического артрита

Рис. 15.5 Упрощенная схема метаболизма пуринов.

Подагра - это общее заболевание, которое характеризуется отложением в тканях кристаллов солей мочевой кислоты

Подагра поражает преимущественно мужчин в возрасте 30-40 лет, но также встречается и у женщин в постклимактерическом периоде. Клинические проявления включают воспалительный артрит (острая подагра), хронические воспаления хряща и околосуставных тканей, камни мочевой кислоты в почках (мочекаменная болезнь) и реже - подагрическую нефропатию. Гиперурикемия встречается часто, но обычно ее не лечат, если только она не связана с симптомами и признаками.

Рис. 15.6 Выделение мочевой кислоты в почке и ее реабсорбция. Средства, выводящие мочевую кислоту, препятствуют ее повторному всасыванию в проксимальных трубочках.

Образование и выделение мочевой кислоты обычно направлено на то, чтобы держать уровень ее концентрации в тканях ниже той отметки, при которой она преобразуется в кристаллические формы (рис. 15.5, 15.6). На синтез мочевой кислоты и ее выделение через почки могут оказывать влияние генетические факторы и окружающая среда. Гиперурикемия связана с ожирением, сахарным диабетом, гипертензией и почечной недостаточностью и с применением тиазидиновых диуретиков и салицилатов в малых дозах.

Избыточное образование мочевой кислоты встречается у 10% больных подагрой. Оно может быть связано с наследственной нехваткой энзимов или пролиферативными нарушениями спинного мозга. Уменьшенное выделение мочевой кислоты через почки связано с остальными 90% случаев подагры. Уменьшенное выделение уратов через почки обусловлено хронической почечной недостаточностью, свинцовой нефропатией, кетоацидозом, гипотиреозом и несахарным диабетом.

Отложение пирофосфата дигидрата кальция и гидроокислов апатита

Отложения пирофосфата дигидрата кальция ассоциируется со множеством состояний и может привести к острому воспалению (псевдоподагра) и дегенерации суставов. Псевдоподагра - относительно распространенное заболевание, клинические проявления которого сходны с проявлениями острой подагры. Характерное острое воспаление обусловлено ответом нейтрофилов, реагирующих на кристаллы пирофосфата кальция. Терапию воспаления тканей проводят теми же препаратами, что и подагры. Отложение гидроокислов апатита может привести к острому воспалению сустава, околосуставных тканей и подкожным отложениям. Оно часто связано с остеоартритом, но роль кристаллов апатита в его патогенезе неясна.

Системная красная волчанка

Системная красная волчанка - аутоиммунное заболевание, которое поражает приблизительно 1 человека из 1000 и преобладает в основном у молодых женщин. Заболеваемость и смертность снижена во многих странах благодаря ранней диагностике и лечению. Вероятность осложнений, связанных с этим заболеванием, выше у социально необеспеченных слоев населения, а случаи заболевания чаще встречаются у лиц африканского, испанского и азиатского происхождения. СКВ характеризуется множеством клинических проявлений, включая кожные и костно-мышечные. Почечные, легочные, серозные, неврологические и психиатрические нарушения, а также ретикулоэндотелиальные патологии встречаются реже, но они потенциально более опасны. К патологическим явлениям относят воспаления, аномалии и отложения иммунных комплексов.

К иммуннологическим нарушениям относят появление антител к разнообразным собственным тканям. Часто встречаются антинуклеарные антитела, которые воздействуют на клеточные ядра. Вклад антинуклеарных антител в клиническую картину неясен, поскольку они вырабатываются при отсутствии заболевания, к тому же целевой антиген в ядрах, как правило, защищен от связывания антителами. Иммунные нарушения вызывают гиперактивность В-клеток в ответ на свои и чужеродные антитела. Триггерным механизмом может послужить реакция на инородные тела, например вирусы.

Костно-мышечная система - одна из самых крепких систем органов человека. Костно-мышечная система является каркасом для тела человека и дает возможность прямо хождения.

Череп состоит из 8 попарно соединенных костей. Они должны быть идеально симметричны. Кости черепа могут двигаться и смещаться. Череп защищает мозг человека от физических повреждений и строго повторяет его форму. Смещение костей черепа при рождении может вызвать церебральный паралич, косоглазие и потерю слуха. Это может быть вызвано смещением тазовых костей матери. После рождения постепенно становиться тверже, но все же, их можно вправлять.

Позвоночник состоит из 7 шейных, 12 грудных и 5 поясничных . Если посмотреть на человека в профиль, то можно увидеть, что имеются 2 прогиба. 1 в области шеи и 1 в области поясницы. Прогибы позвоночника позволяют снять нагрузку с позвоночных дисков. Между позвоночных дисков находиться пульпозное ядро, выполняющее роль амортизатора.

Внутри шейных позвонков находятся отверстия, через которые проходят шейные вены и шейные артерии. Эта связь обеспечивает мозговое кровообращение. Привычка спать на высокой подушке и любые движения, которые надолго смещают шейные позвонки или травмируют их, могут ухудшать кровообращение и быть причиной хронических заболеваний и инсульта.

Внизу позвоночника, к крестцу крепятся тазобедренные суставы. Естественный прогиб позвоночника в пояснице позволяет снять с него нагрузку, сместив с него центр тяжести. Если убрать прогиб – крестец будет вклиниваться в тазовые кости. Чрезмерная нагрузка ляжет на позвоночные диски, что в конечном итоге приведет к травме.

Тазовые кости должны находиться на одном уровне. Привычка носить тяжести на одной стороне тела, использовать только одну ногу как опорную может являться причиной смешения таза.

Смещение тазовых костей можно определить по смещению уровня плеч. При поднятом левом плече – «короче», то есть выше будет правая нога. И наоборот. Это вызывает общую асимметрию тела, и как следствие могут возникнуть сердечные боли, мастопатия, проблемы с почками.

Все что немеет или болит в мышечной системе, если это не связано с прямыми повреждениями, чаще всего является следствием общей асимметрии тела и пережатым тока , защемлением нервов идущих от и к позвоночнику.

Сколиоз – это не состояние позвоночника, это состояние костей таза, которые выступают фундаментом.

Когда человек постоянно смещает вес тела на одну сторону, стопа сильно прогибается. Для того, чтобы человек не упал на большом пальце вырастает косточка, потом будет хрящ и уплотнение. Если косточка выросла на обеих ногах, это значит, человек сперва стоял на одной ноге, потом она стала болеть, и он стал стоять на другой.

Выровнять таз можно гимнастикой и мануальной терапией.

Воспалительные процессы в суставах, если не было травм, это следствие заболеваний . Под каждым суставом находятся лимфаузлы. Если организм поражен какой либо инфекцией (стрептококк, хламидии и т.п.), происходит затромбовка лимфатических узлов. Жидкость будет накапливаться и собираться в суставе. Если в организме долго живут или возникает лимфатическая фильтрация, то есть каждый день вместе с инфекцией будет истончаться хрящ, который инфекция поразила.

В этом случае нужно пройти противобактериальную, противовирусную и противогрибковую программы.

Жидкость в суставе должна быть чистой. Определить качество суставной жидкости можно по состоянию ногтей. Ногти – это застывшая суставная жидкость, которая каждый день равномерно вытекает и затвердевает. Ногти должны быть прозрачные и твердые. Если ногти рифленые, то с жидкостью что-то не так.

Если на ногтях грибок – этот же грибок находиться в суставной жидкости, и стоит лечить весь организм от грибковой инфекции.

Если ногти слоятся – идет глубокое нарушение минерального обмена, плюс вымываются останки грибков.

Белые точки на ногтях это не усвоенный белок. Нарушение белкового обмена означает, что белки не усваиваются и не перевариваются

Если на ногтях есть белые или чуть розоватые полосы, это может говорить об отравлении солями тяжелых металлов и загрязнении печени.

Если имеется шейный остеохондроз, суставная жидкость будет вытекать неравномерно, и соответственно будут образоваться бугры на ногтях.

Позвоночник надо лечить, начиная с костей таза. Китайская или японская гимнастика будут хорошим выбором.

Косоглазие и кривые зубы могут являться следствием неровных костей черепа.

This text will be replaced

Костно мышечная система Бутакова видео

1. Экология.

Не влияет.

2.Еда.

Недостаток кальция, кремния, фосфора, серы или аминокислот может влиять. Диета должна быть полноценной.

3. Вода.

При ее отсутствии позвоночные диски рассыхаются, снижается эластичность.

4. Психология.

Не влияет

5. Травмы.

Имеют большое значение. Повреждение одного из элементов системы заставляет другие подстраиваться. Нарушается гармония.

6. Наследственность.

Деформированные кости могут передаваться по наследству, особенно зубы, так как передаются форма черепа и пропорции лица.

Сколиоз по наследству не передается.

Передается внешний вид, внутреннее строение, а не заболевание.

7.Медицина.

Не влияет.

Являются причиной воспалительных процессов. Один из наиболее сильных является псориатический артрит.

9. Движение.

Оказывает очень сильное влияние. Необходимо соблюдать правильную технику выполнения упражнений и избегать неудачных поз. Спать желательно только на спине и с валиком под шеей.

Алгоритм восстановления костно-мышечной системы

  1. Движение. Разобраться насколько правильно дается физическая нагрузка.
  2. Вода. Увеличить количество воды в организме.
  3. Травмы. Снять последствия каждой травмы.

В результате травмы происходит деформация костей. Происходит ущемление кровеносных сосудов и нервных проводников. После сотрясения мозга может ощущаться тошнота на протяжении всей жизни.

Травмы задней стороны черепа может привести к потере . Там находятся зрительные буфы, на которые может давить не вправленная кость.

После травмы может появиться косоглазие. Глаза, расположенные в орбитах глазниц будут подстраиваться. То же самое будет делать мозг.

При травме шейных позвонков будут пережаты артерии, отвечающие за кровоснабжение мозга. То же самое можно получить, если не правильно спать.

При защемлении позвоночной артерии ниже ушей, будет слышен шум или звон в ушах. Это будет слышен напор крови.

Чтобы шея выправилось необходимо поправить основание костно-мышечной системы – тазовые суставы. А затем тренировать мышечный корсет.

Скелет и мышцы - опорные структуры и органы движения человека. Они выполняют защитную функцию, ограничивая полости, в которых расположены внутренние органы. Так, сердце и легкие защищены грудной клеткой и мышцами груди и спины; органы брюшной полости (желудок, кишечник, почки) - нижним отделом позвоночника, костями таза, мышцами спины и живота; головной мозг расположен в полости черепа, а спинной мозг - в позвоночном канале.

Костная ткань

Кости скелета человека образованы костной тканью - разновидностью соединительной ткани. Костная ткань снабжена нервами и кровеносными сосудами. Клетки ее имеют отростки. Костные клетки и их отростки окружены мельчайшими «канальцами», заполненными межклеточной жидкостью, через которую происходит питание и дыхание костных клеток.

Общие сведения о мышцах

Мышцы состоят из множества удлиненных клеток - мышечных волокон, способных сокращаться и расслабляться. Расслабленную мышцу можно растянуть, но благодаря своей эластичности она после растяжения способна возвратиться к исходным размерам и форме. Мышцы хорошо снабжаются кровью, которая доставляет им питательные вещества и кислород и удаляет отходы метаболизма. Приток крови к мышцам регулируется таким образом, что в каждый данный момент мышца получает ее в необходимом количестве.

Выделяют три гистологических типа мышц:

  • 1. Гладкие мышцы находятся в стенках трубчатых органов тела и обеспечивают передвижение содержимого этих органов, они медленно сокращаются самопроизвольно. Гладкие мышцы иннервируются вегетативной нервной системой.
  • 2. Сердечная мышца, имеется только в сердце, сокращается самопроизвольно и не подвержена утомлению. Сердечная мышца иннервируется вегетативной нервной системой.
  • 3. Скелетные мышцы (поперечнополосатые мышцы или произвольные мышцы), прикрепляющиеся к костям, они быстро сокращаются и довольно быстро утомляются. Скелетные мышцы иннервируются соматической нервной системой.

Поперечно - полосатые мышцы представляют собой максимально специализированный аппарат для осуществления быстрого сокращения. Поперечно - полосатые мышцы бывают двух типов - скелетные и сердечные.

Скелетные мышцы состоят из длинных и тонких мышечных волокон. Скелетные мышцы присоединяются к кости, по меньшей мере, в двух местах, к одной неподвижной и одной подвижной части скелета, первую из них называют "началом" мышцы, а вторую - "прикреплением". Мышца прикрепляется с помощью плотных, малорастяжимых сухожилий - соединительнотканных образований, состоящих почти исключительно из коллагеновых волокон. Один конец сухожилия переходит в наружную оболочку мышцы, а другой очень прочно прикреплен к надкостнице.

Мышцы способны развивать силу только при укорочении, поэтому для того, чтобы сместить кость и затем вернуть ее в исходное положение, необходимы, по крайней мере, две мышцы или две группы мышц. Пары мышц, действующие таким образом, называются антагонистами.

Скелетные мышцы состоят из мышечных волокон, каждое из которых представляет собой многоядерную клетку, полученную в результате слияния большого количества клеток. Функциональной единицей мышечного волокна является миофибрилла. Миофибриллы занимают практически всю цитоплазму мышечного волокна, оттесняя ядра на периферию

Различают два типа скелетных мышечных волокон.

красные мышечные волокна (волокна 1 типа - тонические), которые содержат большое количество митохондрий с высокой активностью окислительных ферментов. Сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает аэробного метаболизма. Они участвуют в движениях, не требующих значительных усилий, - например, в поддержании позы. Плавные произвольные движения начинаются с активации красных волокон. Медленные (тонические) мышечные волокна расположены в глубоких слоях мышц конечностей.

белые мышечные волокна (волокна 2 типа - физические), которым присуща высокая активность ферментов гликолиза, значительная сила сокращения и такая высокая скорость потребления энергии, для которой уже не хватает аэробного метаболизма. Поэтому двигательные единицы, состоящие из белых волокон, обеспечивают быстрые, но кратковременные движения, требующие рывковых усилий. Быстрые мышечные волокна располагаются в поверхностных слоях мышц конечностей.

Гладкие мышцы, в отличие от скелетных мышц, лишены поперечных полос. Они состоят из длинных, заостренных на концах клеток, которые имеют только одно ядро и содержат как толстые, так и тонкие филаменты, ориентированные вдоль длинной оси клетки. Однако расположены эти филаменты не столь упорядоченно, как в клетках скелетной мускулатуры и клетках сердечной мышцы, и, по-видимому, не образуют миофибрил. Гладкие мышцы специально приспособлены для того, чтобы поддерживать длительное напряжение, затрачивая на это в 5 - 10 раз меньше АТФ, чем понадобилось бы для выполнения той же задачи скелетной мышце. Медленное образование и разрушение актин - миозиновых сшивок не позволяет гладкой мышце быстро сокращаться, но зато дает ей возможность сохранять постоянный мышечный тонус.

Похожие статьи