Какая часть глаза воспринимает свет. Зрение. Методы исследования слухового анализатора

21.10.2018

Глаз человека представляет собой почти шарообразное тело, которое покоится в костной черепной полости, открытой с одной стороны. На рис. 1 изображен разрез глазного яблока и показаны основные детали глаза.

Рис. 1. Схематический разрез глаза человека.


Основная часть глазного яблока с внешней стороны ограничена трехслойной оболочкой. Внешняя твердая оболочка называется склерой (по-гречески - твердость) или белковой оболочкой . Она охватывает со всех сторон внутреннее содержание глаза и непрозрачна на всем своем протяжении за исключением передней части. Здесь склера выдается вперед, совершенно прозрачна и носит название роговой оболочки .

Превосходный колликулум отвечает за перемещение глаз короткими прыжками, называемыми саккадами. Скачкообразное движение глаз решает проблему экстремального размытия, которое может возникнуть, если глаза могут плавно скользить по визуальному ландшафту; саккады можно легко наблюдать, если вы смотрите на чьи-то глаза, когда они пытаются опрокинуть взгляд на комнату. Большинство проекций от сетчатки перемещаются через зрительный нерв в часть таламуса, называемого латеральным коленчатым ядром, глубоко в центре мозга.

Клетки магноцеллюлярного и парвоцеллюлярного слоев проецируются до задней части мозга к первичной зрительной коре. Эти сигналы обрабатываются в стопках ячеек, называемых столбцами окулярного доминирования, шаблон шахматной доски соединений, чередующихся между левым и правым глазом. Небольшое несоответствие в положении объекта относительно каждого глаза позволяет определить глубину путем триангуляции. Визуальная кора новорожденного имеет гипертрофию или чрезмерный рост случайных связей, которые необходимо тщательно обрезать на основе визуального опыта в четко определенные столбцы.

К склере примыкает сосудистая оболочка, переполненная кровеносными сосудами. В передней части глаза, там, где склера переходит в роговую оболочку, сосудистая оболочка утолщается, отходит под углом от склеры и направляется к середине передней камеры, образуя поперечную радужную оболочку .

Если задняя сторона радужной оболочки окрашена только в черный цвет, глаза кажутся синими, чернота просвечивает через кожицу синеватым отливом подобно жилам на руках. Если бывают еще другие цветные включения, что зависит и от количества черного цветного вещества, то глаз нам кажется зеленоватым, серым и карим и т. д. Когда в радужной оболочке нет никакого цветного вещества (как, например, у белых кроликов), то она нам кажется красной от крови, заключенной в пронизывающих ее кровеносных сосудах. В этом случае глаза плохо защищены от света - они страдают светобоязнью (альбинизмом), но в темноте превосходят по остроте зрения глаза с темной окраской.

На самом деле это сокращение количества соединений, а не увеличение, что улучшает способность ребенка видеть мелкие детали и распознавать фигуры и узоры. Фактически, почти все функции видения более высокого порядка зависят от ожиданий, основанных на прошлом опыте. Хотя такие влияния иногда позволяют мозгу обманываться в неправильном восприятии, как в случае с оптическими иллюзиями, они также дают нам возможность быстро видеть и реагировать на визуальный мир. Создание большей части вашего мозга. После десятилетий исследований ученые наконец начали достаточно понимать мозг для разработки и разработки эффективных инструментов для поддержания и улучшения функции мозга.

Радужная оболочка отделяет передний выпуклый сегмент глаза от его остальной части и имеет отверстие, называемое зрачком . Сам зрачок глаза черен по той же причине, что и окна соседнего дома при дневном освещении, которые кажутся нам черными, потому что прошедший через них снаружи свет почти не выходит обратно. Зрачок пропускает внутрь глаза в каждом отдельном случае определенное количество света. Зрачок увеличивается и уменьшается независимо от нашей воли, но в зависимости от условий освещения. Явление приспособления глаза к яркости поля зрения называется адаптацией . Однако основную роль в процессе адаптации играет не зрачок, а сетчатка.

Фокусирование, фокусирование, фокусирование

Упражнения клинически доказаны независимыми исследователями, чтобы помочь людям быстрее мыслить, лучше ориентироваться и помнить больше. Эти улучшения помогут вам быть лучше всего для вас - на работе, с семьей и друзьями, в жизни. Если света нет, мы не можем видеть. То, что звучит как трюизм, - это первый шаг на пути от света к изображению.

Глаза нуждаются в свете, чтобы обеспечить зрительный центр в мозге необходимой информацией, которая затем собирается в доли секунды в дерево, кошку или закат. Видение - это сложный процесс, для которого легкие стимулы являются основой. Свет - электромагнитное излучение разных длин волн.

Сетчаткой называется третья, внутренняя оболочка, представляющая собой свето- и цветочувствительный слой.

Несмотря на незначительную толщину, она имеет очень сложную и многослойную структуру. Светочувствительная часть сетчатки состоит из нервных элементов, заключенных в особую поддерживающую их ткань.

Светочувствительность сетчатки не на всем ее протяжении одинакова. В части ее, расположенной против зрачка и несколько выше зрительного нерва, она обладает наибольшей чувствительностью, но ближе к зрачку она становится все менее и менее чувствительной и, наконец, сразу обращается в тонкую оболочку, прикрывающую внутреннюю часть радужной оболочки. Сетчатка представляет собой разветвления по дну глаза нервных волокон, которые затем сплетаются между собой и образуют зрительный нерв, который сообщается с головным мозгом человека.

От света к изображению в пяти предложениях

Из всего, что мы видим, отражены облака и бутылки с водой, красная капуста и рок-звезды. Отраженные лучи света сначала поражают роговицу, проникают в зрачок, затем попадают в линзу глаза, проходят через студенистую жидкость внутри глаза и, наконец, ударяют по сетчатке в задней части глаза. Здесь свет превращается в нервные импульсы, которые проникают в мозг через зрительный нерв. Только в голове появляется картина. Все это происходит в «скорости света»!

Камера в голове: оптическая система

Для того, чтобы мы могли резко воспринимать картину, наш глаз должен фокусировать световые лучи на сетчатке в одном фокусе. Поэтому наш глаз часто приравнивается к камере. Но сравниваете ли вы гоночный автомобиль со скутером? Хотя оптическая система нашего глаза работает как камера, которая захватывает падающий свет через объектив и апертуру как фотографию на пленке. Но только на сетчатке начинается чудо видеть, и только в мозгу возникает картина, когда мы ее воспринимаем. Опыт и эмоции также играют важную роль в этом процессе.

Существуют два вида окончаний нервных волокон, выстилающих сетчатку: одни, имеющие вид стебелька и относительно длинные, называются палочками, другие, более короткие и более толстые, называются колбочками. Около 130 миллионов палочек и 7 миллионов колбочек насчитывают на сетчатке. Как палочки, так и колбочки очень малы и видны только при увеличении в 150–200 раз под микроскопом: толщина палочек около 2 микрон (0,002 мм), а колбочек 6–7 микрон. В наиболее чувствительном к свету месте сетчатки против зрачка расположены почти одни колбочки, плотность их здесь достигает 100 000 на 1 мм 2 , причем каждые два-три светочувствительных элемента соединены непосредственно с нервными волокнами. Здесь находится так называемая центральная ямка диаметром 0,4 мм. Вследствие этого глаз обладает способностью различать мельчайшие детали лишь только в центре поля зрения, ограничиваемом углом в 1°,3. Так, например, опытные шлифовщики различают просветы в 0,6 микрона, тогда как обычно человек способен заметить просвет в 10 микрон.

Глазная линза подвешена на тонких волокнах зонулы с колесной спинкой на этой кольцевой мышце. Когда видно поблизости, цилиарная мышца сжимается; Линза принимает свою первоначальную сферическую форму и, таким образом, достигает более высокой преломляющей силы. Таким образом, падающий свет сломан сильнее. Когда вы смотрите на расстояние, процесс меняется на противоположное: ресничные мышцы расслабляются, объектив вытягивается плоскостью над зонным волокном и разрушает примерно параллельный свет. Таким образом, ресничные мышцы изменяют кривизну линзы глаза и, таким образом, влияют на преломляющую силу линзовой системы.

Ближайшая к центральной ямке область, так называемое желтое пятно , имеет угловое протяжение 6–8°.

Палочки расположены в пределах всей сетчатки, причем наибольшая концентрация их наблюдается в зоне, смещенной на 10–12° от центра. Здесь на одно волокно зрительного нерва приходится несколько десятков и даже сотен палочек. Периферическая часть сетчатой оболочки служит для общей зрительной ориентировки в пространстве. При помощи специального глазного зеркала, предложенного Г. Гельмгольцем, можно видеть на сетчатке второе пятно, имеющее белую окраску. Это пятно расположено на месте ствола зрительного нерва, и так как здесь уже нет ни колбочек, ни палочек, то этот участок сетчатки не чувствителен к свету и называется поэтому слепым пятном . Слепое пятно сетчатки имеет диаметр 1,88 мм, что соответствует 6° по углу зрения. Это значит, что человек с расстояния 1 м может не видеть предмета, имеющего диаметр около 10 см, если изображение этого предмета проектируется на слепое пятно. Палочки и колбочки различаются по своим функциям: палочки обладают большой чувствительностью, но не «различают» цветов и являются аппаратом сумеречного зрения, т. е. зрения при слабом освещении; колбочки чувствительны к цветам, но зато менее светочувствительны и поэтому являются аппаратом дневного зрения.

Все это происходит автоматически без нашего вмешательства: сила преломления изменяется бесступенчато. Однако с возрастом эластичность глазной линзы уменьшается. Результатом является пресбиопическое зрение, которое можно легко исправить с помощью очков или варифокальных очков.

Чудо видеть на сетчатке глаза

Поэтому оптическая система должна собирать свет, чтобы он попадал в фокальную точку в глазной яме сетчатки. На сетчатке свет затем попадает в оптические клетки. То, что происходит, похоже на чудо: миллионы сенсорных клеток готовят информацию здесь для наших мозгов. Световые импульсы переводятся на химический язык нервных импульсов, которые, в свою очередь, вызывают электрические раздражители, которые затем перемещаются в нервные пути в мозг. Образ, который появляется на сетчатке, не является изображением, которое мы «видим».

У многих животных за сетчаткой находится тонкий мерцающий зеркальный слой, усиливающий действие попадающего в глаз света путем отражения. Глаза таких животных блестят в темноте как раскаленные уголья. Речь идет не о полной темноте, где это явление, конечно, наблюдаться не будет.

Адаптация зрения является сложным процессом переключения глаза с работы колбочковым аппаратом на палочковый (темновая адаптация) или наоборот (световая адаптация). При этом до сих пор остаются неизвестными процессы изменения концентрации светочувствительных элементов в клетках сетчатки, когда чувствительность ее повышается при темновой адаптации в десятки тысяч раз, а также и прочие изменения свойств сетчатки в различных фазах адаптации. Фактические данные процесса адаптации определены достаточно строго и могут быть здесь приведены. Так, в процессе темновой адаптации чувствительность глаза к свету сначала быстро повышается, и это продолжается около 25–40 минут, причем время зависит от уровня начальной адаптации. При длительном пребывании в темноте чувствительность глаза к свету повышается в 50 000 раз и достигает абсолютного светового порога.

Изображение сетчатки уменьшено, стороны обращены вспять, а мир перевернут! Только наш мозг «правильно думает» о мире снова «правильно» и ставит все на ноги! До сих пор увлекательный процесс наблюдения до сих пор не изучен с научной точки зрения. На сетчатке имеются миллионы зрительных клеток - стержней и конусов. Штанги в большинстве и более чувствительны к свету, чем конусы. Они все еще начинают с низкой интенсивности света и посылают свои импульсы в мозг. Однако при затемнении света резкость деталей теряется.

Наш мир быстро теряет цвет, когда стемнеет: все серое и не в фокусе. Чем темнее он становится, тем дальше ученики открываются, чтобы захватить как можно больше света. Изображение теряет глубину резкости. Адаптация к темноте называется адаптацией. Кстати, человек распознает желтый цвет всех цветов даже при слабом освещении; Поскольку желтый цвет обычно контрастирует с окружающей средой, это идеальный цвет сигнала.

Выражая абсолютный порог в люксах освещенности на зрачке, получают в среднем величину порядка 10 -9 люкс.

Это значит, грубо говоря, что в условиях полной темноты наблюдатель смог бы заметить свет от одной стеариновой свечи, удаленной от него на расстоянии 30 км. Чем выше яркость начального поля адаптации, тем медленнее приспосабливается глаз к темноте, и в этих случаях пользуются понятием относительных порогов чувствительности.

Конусы делают мир красивым и красочным!

Затем длинноволновые световые лучи отражаются поверхностью. Если волны различной длины отражаются объектом, применяются законы аддитивного смешивания цветов: создаются смешанные цвета, такие как желтый, розовый, коричневый и т.д. Через нервные пути цветные раздражители достигают мозга; Там возникает реальное ощущение цвета. Лесник может видеть зеленый лес с другой интенсивностью, чем городской житель? Эмоции и опыт также играют определенную роль в цветовом зрении. Конусы - это специалисты по цвету, которые реагируют на одну длину волны за раз.

При обратном переходе от темноты к свету процесс адаптации до восстановления некоторой «постоянной» чувствительности длится всего лишь 5–8 минут, и чувствительность изменяется всего лишь в 20–40 раз. Таким образом, адаптация - это не просто изменение диаметра зрачка, но и сложные процессы на сетчатке и в связанных с нею через зрительный нерв участках коры головного мозга.

Для трех измерений нужны два глаза!

Если все три типа контактов раздражены в равных пропорциях, мы видим белый. Штыри и стержни требуют достаточной интенсивности света, чтобы прыгать на всех. Фраза «Ночью все кошки серые» имеет реальный фон: если она слишком темная, мир выглядит бесцветным, потому что конусы перестали работать. Тип штифта для красного цвета - если вы смешиваете цвета зеленого и красного цветов, вы страдаете от цветовой слепоты. Закройте глаза: теперь вы можете видеть только плоскую картинку! Это все еще кажется вам пространственным?

Сразу же за зрачком глаза расположено совершенно прозрачное, эластичное тело, заключенное в особую сумку, прикрепленную к радужной оболочке системой мышечных волокон. Это тело имеет форму собирательной двояковыпуклой линзы и носит название хрусталика . Назначение хрусталика состоит в том, чтобы преломлять световые лучи и давать на сетчатке глаза ясное и отчетливое изображение предметов, находящихся в поле зрения.

Вот что делает наш мозг: он требует опыта и притворяется нам пространством. Мы не можем видеть трехмерность одним глазом. Для этого нужны оба глаза, которые оптимально работают вместе. Наш правый глаз воспринимает изображение немного больше справа, наш левый глаз немного больше слева - опять же мозг составляет «правильный» и пространственный образ.

Другие части - ось стекла, ямка, макула, склера и зрительный нерв. Конусы и стержни преобразуют светлые фотоны, которые проникают в глаз в сигналы нерва, которые регистрируются в мозге и приводят к зрению. Водная камера находится за роговицей и заполнена прозрачной жидкостью, которая поддерживает давление на глаза. Ученик - это то место, где сначала свет проникает в глаза.

Следует заметить, что в образовании изображения на сетчатке кроме хрусталика принимает участие и роговица, и внутренние полости глаза, заполненные средами с показателями преломления, отличающимися от единицы.

Преломляющая способность всего глаза в целом, а также отдельных частей его оптической системы зависит от радиусов ограничивающих их поверхностей, от показателей преломления веществ и взаимного расстояния между ними. Все эти величины для разных глаз имеют различные значения, поэтому и оптические данные разных глаз различны. В связи с этим вводится понятие схематического или приведенного (редуцированного) глаза, у которого: радиус кривизны преломляющей поверхности 5,73 мм, показатель преломления 1,336, длина глаза 22,78 мм, переднее фокусное расстояние 17,054 мм, заднее фокусное расстояние 22,78 мм.

Хориоида окружает радужную оболочку, которая определяет цвет глаза. Зрачок, отверстие в центре радужки, также сужается или расширяется, чтобы впустить меньше или больше света. Линза, прозрачное двойное выпуклое тело, изменяет формы, фокусируясь на близких или дальних изображениях и фокусирует свет на сетчатке.

Внутренний слой состоит из слоев клеток сетчатки, говорит поддержка макулярной дегенерации, включая волоконно-оптический слой и слой ганглиозных клеток. Эти слои составляют сетчатку, мембрану в задней части глаза, которая получает изображения с помощью света линзы и превращает их в нервные импульсы, которые отправляются в мозг.

Хрусталик глаза образует на сетчатке (так же как объектив фотоаппарата на матовой пластинке) перевернутое изображение тех предметов, на которые мы смотрим. В этом легко убедиться. Возьмем кусок плотной бумаги или почтовую открытку и проколем в ней булавкой маленькое отверстие. Затем поставим булавку головкой вверх на расстояние 2–3 см от глаза и будем смотреть этим глазом через отверстие в бумаге, поставленной на расстояние 4–5 см, на яркое дневное небо или на лампу в молочной колбе. Если подобраны благоприятные для данного глаза расстояния между глазом и булавкой, булавкой и бумагой, то в светлом отверстии мы будем видеть то, что изображено на рис. 2.

Сетчатка содержит миллионы клеток, называемых конусами и стержнями. Палочки представляют собой фоторецепторные клетки, расположенные в основном на одной стороне сетчатки, и отвечают за периферическое зрение и тусклый свет. Конусы расположены ближе к центру сетчатки и отвечают за центральное зрение, яркий свет, мелкие детали и цвет.

Один глаз содержит около миллиона тростей и семь миллионов конусов. Когда конусы и стержни сетчатки преобразуют свет и цвета в нервные импульсы, эти нервные импульсы оставляют глаз на оптическом диске и попадают в зрительный нерв. В этот момент, когда нерв соединяется с сетчаткой, нет конусов и стержней. Эта часть сетчатки часто называется слепого пятна, потому что она не может обнаружить свет или тьму. Наконец, из зрительного нерва нервный импульс передается в мозг.



Рис. 2


Тень булавки на сетчатке будет прямой, но изображение булавки нам будет казаться перевернутым. Любое перемещение булавки в стороны будет восприниматься нами как перемещение ее изображения в обратном направлении. Очертание булавочной головки, не очень четкое, будет казаться при этом находящимся по ту сторону листка бумаги.

Человеческий глаз - это сенсорный орган фоторецептора, который воспринимает свет, цвета, формы, движения, пространство. Глаз оптически эквивалентен обычной камере, состоящей в основном из системы линз, переменной диафрагменной системы и сетчатки, соответствующей цветной пленке.

Роговица - это прозрачный прозрачный слой, на который приходится две трети фокуса света на сетчатке. Световые лучи, падающие на внешнюю поверхность роговицы, преломляются из-за их кривизны и разницы между их показателем преломления и свечением воздуха. Преломление световых лучей фокусируется на сетчатке.

Тот же опыт можно проделать иным способом. Если в куске плотной бумаги проколоть три отверстия, расположенные в вершинах равностороннего треугольника со сторонами, приблизительно равными 1,5–2 мм, и затем расположить, так же как и ранее, булавку и бумагу перед глазом, то будут видны три обратных изображения булавки.

Эти три изображения образуются благодаря тому, что лучи света, проходящие через каждое из отверстий, не пересекаются, так как отверстия находятся в передней фокальной плоскости хрусталика. Каждый пучок дает прямую тень на сетчатке, и каждая тень воспринимается нами как перевернутое изображение.

Если приставить к глазу бумагу с тремя отверстиями, а к источнику света - бумагу с одним отверстием, то наш глаз будет видеть обращенный треугольник. Все это убедительно доказывает, что наш глаз все предметы воспринимает в прямом виде потому, что рассудок переворачивает их изображения, получающиеся на сетчатке.

Еще в начале 20-х годов американец А. Стрэттон и в 1961 г. профессор Калифорнийского института доктор Ирвин Муд поставили на себе интересный эксперимент. В частности, И. Муд надел плотно прилегающие к лицу специальные очки, через которые видел все так, как на матовом стекле фотоаппарата. Восемь дней он, проходя несколько десятков шагов, ощущал симптомы морской болезни, путал левую сторону с правой, верх и низ. А потом, хотя очки по-прежнему были перед глазами, снова увидел все таким, каким видят все люди. Ученый снова обрел свободу движений и способность к быстрой ориентировке.

В своих очках он проехал на мотоцикле по самым оживленным улицам Лос-Анжелоса, водил автомобиль, пилотировал самолет. А затем Муд снял очки - и мир вокруг него опять «перевернулся». Пришлось ждать еще несколько дней, пока все вошло в норму. Эксперимент еще раз подтвердил, что воспринимаемые зрением образы попадают в мозг не такими, какими их передает на сетчатку оптическая система глаза. Зрение - это сложный психологический процесс, зрительные впечатления согласуются с сигналами, получаемыми другими органами чувств.

Требуется время, прежде чем вся эта сложная система настроится и начнет функционировать нормально. Именно такой процесс происходит с новорожденными, которые первое время видят все перевернутым и лишь спустя некоторое время начинают воспринимать зрительные ощущения правильно.

Поскольку сетчатка не является плоским экраном, а имеет скорее сферическую форму, то и изображение на ней не будет плоским. Однако и этого мы не замечаем в процессе зрительного восприятия, так как наш рассудок способствует тому, чтобы мы воспринимали предметы такими, какие они есть в действительности.

Сумка, в которой укреплен хрусталик, представляет собой кольцеобразную мышцу. Эта мышца может находиться в состоянии натяжения, что заставляет хрусталик принимать наименее искривленную форму. Когда натяжение этой мышцы уменьшается, хрусталик под действием упругих сил увеличивает свою кривизну. Когда хрусталик растянут, он дает на сетчатке глаза резкое изображение предметов, находящихся на больших расстояниях; когда же он не растянут и кривизна его поверхностей велика, то на сетчатой оболочке глаза получается резкое изображение близких предметов. Изменение кривизны хрусталика и приспособление глаза к отчетливому восприятию далеких и близких предметов представляет собой еще одно весьма важное свойство глаза, которое называется аккомодацией.

Явление аккомодации легко наблюдать следующим образом: будем смотреть одним глазом вдоль натянутой длинной нити. При этом, желая видеть близкие и дальние участки нити, мы будем менять кривизну поверхностей хрусталика. Заметим, что на расстоянии до 4 см от глаза нить вообще не видна; только начиная с 10–15 см мы ее видим четко и хорошо. Это расстояние различно для людей молодых и старых, для близоруких и дальнозорких, причем для первых оно меньше, а для вторых больше. Наконец, наиболее удаленная от нас часть нити, видимая четко при данных условиях, будет также различно удалена для этих людей. Близорукие люди не будут видеть нить далее 3 м.

Оказывается, например, что для рассматривания одного и того же печатного текста у различных людей будут различные расстояния наилучшего видения. Расстояние наилучшего видения, на котором нормальный глаз испытывает наименьшее напряжение при рассматривании деталей предмета, составляет 25–30 см.

Пространство между роговицей и хрусталиком известно под названием передней камеры глаза . Эта камера заполнена студенистой прозрачной жидкостью. Вся внутренность глаза между хрусталиком и глазным нервом заполнена несколько иного рода стекловидным телом. Являясь средой прозрачной и преломляющей, это стекловидное тело в то же время способствует сохранению формы глазного яблока.

В заключении к своей книге «О летающих тарелках» американский астроном Д. Мензел пишет: «Во всяком случае помните, что летающие тарелки: 1) действительно существуют; 2) их видели; 3) но они совсем не то, за что их принимают ».

В книге описаны многие факты, когда наблюдатели видели летающие тарелки или подобные им необычные светящиеся предметы, и приведено несколько исчерпывающих объяснений различных оптических явлений в атмосфере.

Одним из возможных объяснений появления в поле зрения светящихся или темных предметов могут быть так называемые энтоптические явления в глазу, заключающиеся в следующем.

Иногда, устремляя взгляд на яркое дневное небо или на освещенный солнцем чистый снег, мы видим одним глазом или двумя маленькие темные кружочки, которые опускаются вниз. Это не обман зрения и не какой-либо недостаток глаза. Небольшие включения в стекловидное тело глаза (например, крошечные сгустки крови, попавшие туда из кровеносных сосудов сетчатки) при фиксации взгляда на очень светлый фон отбрасывают тени на сетчатку глаза и становятся ощутимыми. Каждое движение глаза как бы подбрасывает эти мельчайшие частички, а потом они под действием силы тяжести опускаются.

Предметы самого различного вида, например пылинки, могут находиться на поверхности нашего глаза. Если такая пылинка попадет на зрачок и будет озарена ярким светом, она покажется большим светлым шаром с неясными очертаниями. Ее можно принять за летающую тарелку, и это уж будет иллюзия зрения.

Подвижность глаза обеспечивается действием шести мышц, прикрепленных, с одной стороны, к глазному яблоку, а с другой - к глазной орбите.

Когда человек рассматривает, не поворачивая головы, неподвижные предметы, расположенные в одной фронтальной плоскости, то глаза или остаются неподвижными (фиксированными) или быстро меняют точки фиксации скачками. А. Л. Ярбусом разработана точная методика определения последовательных перемещений глаза при рассматривании различных предметов. В результате опытов установлено, что глаза остаются неподвижными 97 % времени, но зато время, затраченное на каждый акт фиксации, мало (0,2–0,3 сек), и в течение одной минуты глаза могут менять точки фиксации до 120 раз. Интересно, что у всех людей продолжительность скачков (для одних и тех же углов) совпадает с изумительной точностью: ±0,005 сек.

Продолжительность скачка не зависит от попыток наблюдателя «совершить» скачок побыстрее или помедленнее.

Она зависит только от величины угла, на который совершается скачок. Скачки обоих глаз совершаются синхронно.

Когда человек «плавно» обводит взором какую-нибудь неподвижную фигуру (например, круг), ему кажется, что глаза движутся непрерывно. В действительности же и в этом случае движение глаз скачкообразно, причем величина скачков очень мала.

При чтении глаз читающего останавливается не на каждой букве, а только на одной из четырех-шести, и, несмотря на это, мы понимаем смысл прочитанного.

Очевидно, при этом используется заранее накопленный опыт и сокровища зрительной памяти.

При наблюдении движущегося объекта процесс фиксации происходит при скачкообразном перемещении глаз, с той же результирующей угловой скоростью, с которой движется и объект наблюдения; при этом изображение объекта на сетчатке остается относительно неподвижным.

Укажем вкратце на другие свойства глаза, которые имеют отношение к нашей теме.

На сетчатой оболочке глаза получается изображение рассматриваемых предметов, причем всегда предмет нам виден на том или ином фоне. Это означает, что некоторая часть светочувствительных элементов сетчатки раздражается световым потоком, распределенным по поверхности изображения предмета, а окружающие светочувствительные элементы раздражаются потоком от фона. Способность глаз обнаруживать рассматриваемый объект по его контрасту с фоном называется контрастной чувствительностью глаза . Отношение разности яркостей предмета и фона к яркости фона называется контрастом яркости . Контраст увеличивается, когда при неизменной яркости фона увеличивается яркость объекта или при неизменной яркости объекта уменьшается яркость фона.

Способность глаза различать форму предмета или его детали называют остротой различения . Если изображение двух близких точек на сетчатой оболочке глаза возбудит соседние светочувствительные элементы (причем если разность яркостей этих элементов выше пороговой разности яркостей), то эти две точки видны раздельно. Наименьший размер видимого предмета определяется наименьшим размером его изображения на сетчатке глаза. Для нормального глаза этот размер равен 3,6 микрона. Такое изображение получается от предмета размером 0,06 мм, расположенного на расстоянии 25 см от глаза.

Правильнее определить предел углом зрения; для указанного случая он составит 50 угловых минут. Для больших расстояний и ярко светящихся предметов предельный угол зрения уменьшается. Пороговой разностью яркостей в данных условиях мы называем наименьший перепад яркостей, воспринимаемый нашим глазом.

Практически глаз обнаруживает разность яркостей в 1,5–2 %, а в благоприятных условиях до 0,5–1 %. Однако пороговая разность яркостей сильно зависит от многих причин: от яркости, к которой глаз был предварительно приспособлен, от яркости фона, на котором будут видны сравниваемые поверхности. Замечено, что сравнивать темные поверхности лучше на фоне более темном, чем сравниваемые поверхности, а светлые поверхности, наоборот, - на более ярком фоне.

Источники света, находящиеся достаточно далеко от глаза, мы называем «точечными», хотя в природе светящихся точек не существует. Видя эти источники, мы ничего не можем сказать о их форме и диаметре, они нам кажутся лучистыми, как и далекие звезды. Эта иллюзия зрения обусловлена недостаточной остротой различения (разрешающей способностью) глаза.

Во-первых, вследствие неоднородности хрусталика лучи, проходящие через него, преломляются так, что звезды окружаются лучистым ореолом.

Во-вторых, изображение звезды на сетчатке настолько мало, что не перекрывает двух светочувствительных элементов, разделенных хотя бы одним нераздраженным элементом. Разрешающая способность глаза увеличивается при помощи оптических приборов наблюдения и, в частности, телескопов, через которые, например, все планеты видны нам как круглые тела.

Приведение осей обоих глаз в положение, необходимое для наилучшего восприятия расстояний, называется конвергенцией . Результат действия мышц, перемещающих глаз для лучшего видения близких и дальних предметов, можно наблюдать следующим образом. Если мы будем смотреть через сетку на окно, то неясные отверстия сетки будут нам казаться большими, а если же смотреть на карандаш перед этой сеткой, то отверстия сетки будут казаться значительно меньшими.

Точки сетчаток двух глаз, обладающие тем свойством, что раздражающий объект виден нам находящимся в одной точке пространства, называются корреспондирующими .

Благодаря тому, что два наших глаза находятся на некотором расстоянии и их оптические оси скрещиваются определенным образом, изображения предметов на разных (не корреспондирующих) участках сетчаток получаются тем более отличными одно от другого, чем ближе к нам находится рассматриваемый предмет. Автоматически, как нам кажется, как бы без участия сознания, мы учитываем эти особенности изображений на сетчатках, и по ним не только судим об удаленности предмета, но и воспринимаем рельеф и перспективу. Эта способность нашего зрения называется стереоскопическим эффектом (греческое стерео - объем, телесность). Нетрудно понять, что наш мозг при этом так же выполняет определенную работу, как и при переворачивании изображения предмета на сетчатке.

Наш орган зрения обладает еще весьма замечательным свойством: он различает огромное многообразие цветов предметов. Современная теория цветового зрения объясняет эту способность глаза наличием на сетчатой оболочке трех видов первичных аппаратов.

Видимый свет (волны электромагнитных колебаний длиною от 0,38 до 0,78 мк) возбуждает эти аппараты в разной степени. Опытом установлено, что колбочковый аппарат обладает наибольшей чувствительностью к желто-зеленым излучениям (длина волны 0,555 мк). В условиях же действия сумеречного (палочкового) аппарата зрения максимум чувствительности глаза смещается в сторону более коротких волн фиолетово-синего участка спектра на 0,45-0,50 мк. Эти возбуждения первичных аппаратов сетчатки обобщаются корой головного мозга, и мы воспринимаем определенный цвет видимых предметов.

Все цвета принято делить на хроматические и ахроматические . Каждый хроматический цвет имеет цветовой тон, чистоту цвета и яркость (красный, желтый, зеленый и т. д.). Ахроматические цвета в сплошном спектре отсутствуют - они бесцветны и отличаются друг от друга только яркостью. Эти цвета образуются благодаря избирательному отражению или пропусканию дневного света (белый, все серые и черный цвет). Текстильщики, например, способны различать до 100 оттенков черного цвета.

Таким образом, зрительные ощущения позволяют нам судить о цвете и яркости предметов, о их размерах и форме, о их движении и взаимном расположении в пространстве. Следовательно, и восприятие пространства является в основном функцией зрения.

В этой связи уместно остановиться еще на одном способе определения взаимного расположения предметов в пространстве - на способе зрительного параллакса.

Расстояние до предмета оценивают или по тому углу, под которым виден этот предмет, зная угловые размеры других видимых предметов, или пользуясь стереоскопической способностью зрения, которая и создает впечатление рельефности. Оказывается, что на удалении, большем 2,6 км, рельеф уже не воспринимается. Наконец, расстояние до предмета оценивается просто степенью изменения аккомодации или путем наблюдения положения этого предмета по отношению к положению других предметов, находящихся на известных нам расстояниях.

При ложном представлении о размере предмета можно допустить большую ошибку в определении расстояния до него. Оценка расстояния с помощью обоих глаз значительно точнее, чем при помощи одного глаза. Один глаз оказывается полезнее, чем два при определении направления на предмет, например при прицеливании. Когда глаз рассматривает не предмет, а изображение, полученное с помощью линз или зеркал, то все указанные выше способы определения расстояния до предмета иногда оказываются неудобными, а то и вовсе непригодными.

Как правило, размеры изображения совершенно не совпадают с размерами самого предмета, поэтому ясно, что мы не можем судить о расстоянии по видимым размерам изображения. При этом очень трудно отделить изображение от самого предмета, и это обстоятельство может явиться причиной очень сильного оптического обмана.

Например, предмет, рассматриваемый через вогнутые чечевицы, кажется находящимся от нас на гораздо большем расстоянии, чем в действительности, ибо его видимые размеры меньше истинных. Эта иллюзия настолько сильна, что она более чем нейтрализует определение расстояния, к которому нас приводит аккомодация глаза. Поэтому нам остается прибегнуть только к единственному способу, при помощи которого мы можем, без всяких приборов, судить о расстоянии до предмета, а именно, к определению положения данного предмета по отношению к другим предметам. Этот метод и именуется методом параллакса . Если наблюдатель встанет перед окном (рис. 3), а между окном и наблюдателем будет находиться какой-нибудь предмет, скажем штатив на столе, и если, далее, наблюдатель передвинется, например влево, то он увидит, что штатив как бы передвинулся вдоль окна вправо. С другой стороны, если наблюдатель взглянет через окно на какой-нибудь предмет, скажем на ветви деревьев, и передвинется в том же направлении, то и предмет за окном передвинется туда же. Заменяя окно линзой и наблюдая через линзу изображение печатного текста, можно определить, где находится это изображение: если за линзой, то оно будет перемещаться при перемещении глаза в ту же сторону, что и глаз. Если же изображение ближе к глазу, чем линза, то оно будет перемещаться в направлении, обратном перемещению глаза.



Рис. 3. Явление параллакса. При движении наблюдателя вправо С и D перемещаются вдоль окна влево (причем С перемещается меньше, чем D ). Одновременно ветки дерева за окном (А и В ) перемещаются вдоль окна вправо (причем дальняя ветка передвинется вправо больше, чем ближняя).


Акт зрительного восприятия рассматривается теперь как сложная цепь различных процессов и превращений, еще до сих пор недостаточно изученных и понятых. За сложным фотохимическим процессом в сетчатой оболочке глаза следуют нервные возбуждения волокон зрительного нерва, которые затем передаются коре головного мозга.

Наконец, в пределах коры головного мозга происходит оформление зрительных восприятий; здесь они, возможно, взаимосвязываются с другими нашими ощущениями и контролируются на основании заранее приобретенного нами опыта, и только после этого начальное раздражение превращается в законченный зрительный образ.

Оказывается, мы видим в данный момент только то, что нас интересует, и это очень полезно для нас. Все поле зрения всегда заполнено разнообразными впечатляющими объектами, но наше сознание из всего этого выделяет лишь то, на что мы в данный момент обращаем особое внимание.

Однако все неожиданно появляющееся в поле нашего зрения способно невольно привлечь наше внимание.

Например, при интенсивной умственной работе нам может сильно помешать качающаяся лампа: глаза поневоле фиксируют это движение, а это в свою очередь рассеивает внимание.

Наше зрение обладает наибольшей пропускной способностью и может передать в мозг в 30 раз больше информации, чем наш слух, хотя зрительный сигнал достигает мозга через 0,15 сек, слуховой через 0,12 сек, а осязательный через 0,09 сек.

Следует заметить, что все важнейшие свойства глаза тесным образом между собой связаны; они не только зависят друг от друга, но и проявляются в различной степени, например при изменении яркости поля адаптации, т. е. яркости, к которой приспособлен человеческий глаз в данных конкретных условиях и в данный момент времени.

Указанные здесь способности органа зрения человека часто имеют у различных людей различную степень развитости и чувствительности. «Глаз - это чудо для пытливого ума », - говорил английский физик Д. Тиндаль.

Человек не может видеть в полной темноте.
Для того, чтобы человек увидел предмет, необходимо, чтобы свет отразился от предмета и попал на сетчатку глаза. Источники света могут быть естественные (огонь, Солнце) и искусственные (различные лампы). Но что представляет собой свет?
Согласно современным научным представлениям, свет представляет собой электромагнитные волны определенного (достаточно высокого) диапазона частот. Эта теория берет свое начало от Гюйгенса и подтверждается многими опытами (в частности, опытом Т. Юнга). При этом в природе света в полной мере проявляется карпускулярно-волновой дуализм, что во многом определяет его свойства: при распространении свет ведет себя как волна, при излучении или поглощении - как частица (фотон). Таким образом, световые эффекты, происходящие при распространении света (интерференция, дифракция и т.п.), описываются уравнениями Максвелла, а эффекты, проявляющиеся при его поглощении и излучении (фотоэффект, эффект Комптона) - уравнениями квантовой теории поля.
Упрощенно, глаз человека представляет собой радиоприемник, способный принимать электромагнитные волны определенного (оптического) диапазона частот. Первичными источниками этих волн являются тела, их излучающие (солнце, лампы и т.п.), вторичными - тела, отражающие волны первичных источников. Свет от источников попадает в глаз и делает их видимыми человеку. Таким образом, если тело является прозрачным для волн видимого диапазона частот (воздух, вода, стекло и т.п.), то оно не может быть зарегистрировано глазом. При этом глаз, как и любой другой радиоприемник, «настроен» на определенный диапазон радиочастот (в случае глаза это диапазон от 400 до 790 терагерц), и не воспринимает волны, имеющие более высокие (ультрафиолетовые) или низкие (инфракрасные) частоты. Эта «настройка» проявляется во всем строении глаза - начиная от хрусталика и стекловидного тела, прозрачных именно в этом диапазоне частот, и заканчивая величиной фоторецепторов, которые в данной аналогии подобны антеннам радиоприемников и имеют размеры, обеспечивающие максимально эффективный прием радиоволн именно этого диапазона.
Все это в совокупности определяет диапазон частот, в котором видит человек. Он называется диапазоном видимого излучения.
Видимое излучение — электромагнитные волны, воспринимаемые человеческим глазом, которые занимают участок спектра с длиной волны приблизительно от 380 (фиолетовый) до 740 нм (красный). Такие волны занимают частотный диапазон от 400 до 790 терагерц. Электромагнитное излучение с такими частотами также называется видимым светом, или просто светом (в узком смысле этого слова). Наибольшую чувствительность к свету человеческий глаз имеет в области 555 нм (540 ТГц), в зелёной части спектра.

Белый свет, разделённый призмой на цвета спектра

При разложении луча белого цвета в призме образуется спектр, в котором излучения разных длин волн преломляются под разным углом. Цвета, входящие в спектр, то есть такие цвета, которые могут быть получены световыми волнами одной длины (или очень узким диапазоном), называются спектральными цветами. Основные спектральные цвета (имеющие собственное название), а также характеристики излучения этих цветов, представлены в таблице:

В спектре содержатся не все цвета, которые различает человеческий мозг и они образуются от смешения других цветов.[
Чем человек видит

Благодаря зрению мы получаем 90% информации об окружающем мире, поэтому глаз - один из важнейших органов чувств.
Глаз можно назвать сложным оптическим прибором. Его основная задача — "передать" правильное изображение зрительному нерву.



Строение глаза человека

Роговица — прозрачная оболочка, покрывающая переднюю часть глаза. В ней отсутствуют кровеносные сосуды, она имеет большую преломляющую силу. Входит в оптическую систему глаза. Роговица граничит с непрозрачной внешней оболочкой глаза — склерой. См. строение роговицы.
Передняя камера глаза — это пространство между роговицей и радужкой. Она заполнена внутриглазной жидкостью.
Радужка — по форме похожа на круг с отверстием внутри (зрачком). Радужка состоит из мышц, при сокращении и расслаблении которых размеры зрачка меняются. Она входит в сосудистую оболочку глаза. Радужка отвечает за цвет глаз (если он голубой — значит, в ней мало пигментных клеток, если карий — много). Выполняет ту же функцию, что диафрагма в фотоаппарате, регулируя светопоток.
Зрачок — отверстие в радужке. Его размеры обычно зависят от уровня освещенности. Чем больше света, тем меньше зрачок.
Хрусталик — "естественная линза" глаза.

Он прозрачен, эластичен — может менять свою форму, почти мгновенно "наводя фокус", за счет чего человек видит хорошо и вблизи, и вдали. Располагается в капсуле, удерживается ресничным пояском. Хрусталик, как и роговица, входит в оптическую систему глаза. Прозрачность хрусталика глаза человека превосходна - пропускается большая часть света с длинами волн между 450 и 1400 нм. Свет с длиной волны выше720 нм не воспринимается. Хрусталик глаза человека почти бесцветен при рождении, но приобретает желтоватый цвет с возрастом. Это предохраняет сетчатку глаза от воздействия ультрафиолетовых лучей.
Стекловидное тело — гелеобразная прозрачная субстанция, расположенная в заднем отделе глаза. Стекловидное тело поддерживает форму глазного яблока, участвует во внутриглазном обмене веществ. Входит в оптическую систему глаза.
Сетчатка — состоит из фоторецепторов (они чувствительны к свету) и нервных клеток. Клетки-рецепторы, расположенные в сетчатке, делятся на два вида: колбочки и палочки. В этих клетках, вырабатывающих фермент родопсин, происходит преобразование энергии света (фотонов) в электрическую энергию нервной ткани, т.е. фотохимическая реакция.
Склера — непрозрачная внешняя оболочка глазного яблока, переходящая в передней части глазного яблока в прозрачную роговицу. К склере крепятся 6 глазодвигательных мышц. В ней находится небольшое количество нервных окончаний и сосудов.
Сосудистая оболочка — выстилает задний отдел склеры, к ней прилегает сетчатка, с которой она тесно связана. Сосудистая оболочка ответственна за кровоснабжение внутриглазных структур. При заболеваниях сетчатки очень часто вовлекается в патологический процесс. В сосудистой оболочке нет нервных окончаний, поэтому при ее заболевании не возникают боли, обычно сигнализирующие о каких-либо неполадках.
Зрительный нерв — при помощи зрительного нерва сигналы от нервных окончаний передаются в головной мозг.
Человек не рождается с уже развитым органом зрения: в первые месяцы жизни происходит формирование мозга и зрения, и примерно к 9 месяцам они способны почти моментально обрабатывать поступающую зрительную информацию. Для того чтобы видеть, необходим свет.
Световая чувствительность человеческого глаза

Способность глаза воспринимать свет и распознавать различной степени его яркости называется светоощущением, а способность приспосабливаться к разной яркости освещения — адаптацией глаза; световая чувствительность оценивается величиной порога светового раздражителя.
Человек с хорошим зрением способен разглядеть ночью свет от свечи на расстоянии нескольких километров. Максимальная световая чувствительность достигается после достаточно длительной темновой адаптации. Её определяют под действием светового потока в телесном угле 50° при длине волны 500 нм (максимум чувствительности глаза). В этих условиях пороговая энергия света около 10−9 эрг/с, что эквивалентно потоку нескольких квантов оптического диапазона в секунду через зрачок.
Вклад зрачка в регулировку чувствительности глаза крайне незначителен. Весь диапазон яркостей, которые наш зрительный механизм способен воспринять, огромен: от 10−6 кд.м² для глаза, полностью адаптированного к темноте, до 106 кд.м² для глаза, полностью адаптированного к свету Механизм такого широкого диапазона чувствительности кроется в разложении и восстановлении фоточувствительных пигментов в фоторецепторах сетчатки — колбочках и палочках.
В глазу человека содержатся два типа светочувствительных клеток (рецепторов): высоко чувствительные палочки, отвечающие за сумеречное (ночное) зрение, и менее чувствительные колбочки, отвечающие за цветное зрение.

Нормализованные графики светочувствительности колбочек человеческого глаза S, M, L. Пунктиром показана сумеречная, «чёрно-белая» восприимчивость палочек.

В сетчатке глаза человека есть три вида колбочек, максимумы чувствительности которых приходятся на красный, зелёный и синий участки спектра. Распределение типов колбочек в сетчатке неравномерно: «синие» колбочки находятся ближе к периферии, в то время как «красные» и «зеленые» распределены случайным образом. Соответствие типов колбочек трём «основным» цветам обеспечивает распознавание тысяч цветов и оттенков. Кривые спектральной чувствительности трёх видов колбочек частично перекрываются, что способствует явлению метамерии. Очень сильный свет возбуждает все 3 типа рецепторов, и потому воспринимается, как излучение слепяще-белого цвета.


Равномерное раздражение всех трёх элементов, соответствующее средневзвешенному дневному свету, также вызывает ощущение белого цвета.
За цветовое зрение человека отвечают гены, кодирующие светочувствительные белки опсины. По мнению сторонников трёхкомпонентной теории, наличие трёх разных белков, реагирующих на разные длины волн, является достаточным для цветового восприятия. У большинства млекопитающих таких генов только два, поэтому они имеют черно-белое зрение.
Чувствительный к красному свету опсин кодируется у человека геном OPN1LW.
Другие опсины человека кодируют гены OPN1MW, OPN1MW2 и OPN1SW, первые два из них кодируют белки, чувствительные к свету со средними длинами волны, а третий отвечает за опсин, чувствительный к коротковолновой части спектра.
Бинокулярное и Стереоскопическое зрение

Зрительный анализатор человека в нормальных условиях обеспечивает бинокулярное зрение, то есть зрение двумя глазами с единым зрительным восприятием. Основным рефлекторным механизмом бинокулярного зрения является рефлекс слияния изображения — фузионный рефлекс (фузия), возникающий при одновременном раздражении функционально неодинаковых нервных элементов сетчатки обоих глаз. Вследствие этого возникает физиологическое двоение предметов, находящихся ближе или дальше фиксируемой точки (бинокулярная фокусировка). Физиологичное двоение (фокус) помогает оценивать удалённость предмета от глаз и создает ощущение рельефности, или стереоскопичности, зрения.
При зрении одним глазом восприятие глубины (рельефной удалённости) осуществляется гл. обр. благодаря вторичным вспомогательным признакам удаленности (видимая величина предмета, линейная и воздушная перспективы, загораживание одних предметов другими, аккомодация глаза и т. д..).

Проводящие пути зрительного анализатора
1 — Левая половина зрительного поля, 2 — Правая половина зрительного поля, 3 — Глаз, 4 — Сетчатка, 5 — Зрительные нервы, 6 — Глазодвигательный нерв, 7 — Хиазма, 8 — Зрительный тракт, 9 — Латеральное коленчатое тело, 10 — Верхние бугры четверохолмия, 11 — Неспецифический зрительный путь, 12 — Зрительная кора головного мозга.

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв, хиазму, зрительные тракты в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим. Все эти органы и составляют наш зрительный анализатор или зрительную систему.
Психология восприятия цвета

Психология восприятия цвета — способность человека воспринимать, идентифицировать и называть цвета.
Ощущение цвета зависит от комплекса физиологических, психологических и культурно-социальных факторов. Первоначально исследования восприятия цвета проводились в рамках цветоведения; позже к проблеме подключились этнографы, социологи и психологи.
Зрительные рецепторы по праву считаются «частью мозга, вынесенной на поверхность тела». Неосознаваемая обработка и коррекция зрительного восприятия обеспечивает «правильность» зрения, и она же является причиной «ошибок» при оценке цвета в определенных условиях. Так, устранение «фоновой» засветки глаза (например, при разглядывании удаленных предметов через узкую трубку) существенно меняет восприятие цвета этих предметов.
Одновременное рассматривание одних и тех же несамосветящихся предметов или источников света несколькими наблюдателями с нормальным цветовым зрением, в одинаковых условиях рассматривания, позволяет установить однозначное соответствие между спектральным составом сравниваемых излучений и вызываемыми ими цветовыми ощущениями. На этом основаны цветовые измерения (колориметрия). Такое соответствие однозначно, но не взаимно-однозначно: одинаковые цветовые ощущения могут вызывать потоки излучений различного спектрального состава (метамерия).
Определений цвета, как физической величины, существует много. Но даже в лучших из них с колориметрической точки зрения часто опускается упоминание о том, что указанная (не взаимная) однозначность достигается лишь в стандартизованных условиях наблюдения, освещения и т. д., не учитывается изменение восприятия цвета при изменении интенсивности излучения того же спектрального состава (явление Бецольда — Брюкке), не принимается во внимание т. н. цветовая адаптация глаза и др. Поэтому многообразие цветовых ощущений, возникающих при реальных условиях освещения, вариациях угловых размеров сравниваемых по цвету элементов, их фиксации на разных участках сетчатки, разных психофизиологических состояниях наблюдателя и т. д., всегда богаче колориметрического цветового многообразия.
Например, в колориметрии одинаково определяются некоторые цвета (такие, как оранжевый или жёлтый), которые в повседневной жизни воспринимаются (в зависимости от светлоты) как бурый, «каштановый», коричневый, «шоколадный», «оливковый» и т. д. В одной из лучших попыток определения понятия Цвет, принадлежащей Эрвину Шрёдингеру, трудности снимаются простым отсутствием указаний на зависимость цветовых ощущений от многочисленных конкретных условий наблюдения. По Шредингеру, Цвет есть свойство спектрального состава излучений, общее всем излучениям, визуально не различимым для человека.
В силу природы глаза, свет, вызывающий ощущение одного и того же цвета (например белого), то есть одну и ту же степень возбуждения трёх зрительных рецепторов, может иметь разный спектральный состав. Человек в большинстве случаев не замечает данного эффекта, как бы «домысливая» цвет. Это происходит потому, что хотя цветовая температура разного освещения может совпадать, спектры отражённого одним и тем же пигментом естественного и искусственного света могут существенно отличаться и вызывать разное цветовое ощущение.
Различия зрения человека и животных. Метамерия в фотографии

Человеческое зрение является трёхстимульным анализатором, то есть спектральные характеристики цвета выражаются всего в трех значениях. Если сравниваемые потоки излучения с разным спектральным составом производят на колбочки одинаковое действие, цвета воспринимаются как одинаковые.
В животном мире существуют четырёх- и даже пятистимульные цветовые анализаторы, поэтому цвета, воспринимаемые человеком одинаковыми, животным могут казаться разными. В частности, хищные птицы видят следы грызунов на тропинках к норам исключительно благодаря ультрафиолетовой люминесценции компонентов их мочи.
Похожая ситуация складывается и с системами регистрации изображений, как цифровыми, так и аналоговыми. Хотя в большинстве своём они являются трёхстимульными (три слоя эмульсии фотоплёнки, три типа ячеек матрицы цифрового фотоаппарата или сканера), их метамерия отлична от метамерии человеческого зрения. Поэтому цвета, воспринимаемые глазом как одинаковые, на фотографии могут получаться разными, и наоборот.

Похожие статьи