Собирающая линза является. Линза как элемент оптической системы

25.06.2018

0 или мнимым f 2) Увеличенное Г 0, уменьшенное Г 3) Прямым или обратным (перевернутым) " width="640"

Виды линз

Изображение

1)Действительное f 0 или мнимым f

2) Увеличенное Г 0, уменьшенное Г

3) Прямым или обратным (перевернутым)









D – оптическая сила линзы (диоптриях)

F – главный фокус линзы, фокусное расстояние (м)

У собирающей линзы фокусы действительные + F, у рассеивающей мнимые - F

f – расстояние от линзы до изображения

d – расстояние предмета от линзы

n – относительный показатель преломления

R – радиусы сферических поверхностей линзы

Г – линейное увеличение



Виды линз

Прозрачное для света тело, ограниченное выпуклыми или вогнутыми преломляющими поверхностями, называется линзой.

1 – двояковыпуклая

2 – плоско-выпуклые

3 – выпукло-вогнутые

4 – вогнуто-выпуклые

5 – двояковогнутые

  • - плоско-вогнутые












Глаз

1- склера (защитная оболочка из эластичной ткани)

2 – роговица

3 – камеры (полость, заполненная прозрачной жидкостью)

4 – сосудистая оболочка

5 – радужная оболочка

6 – зрачок диаметром диаметром от 2 до 8мм

7 – хрусталик (n = 1,44)

8 – мышцы , изменяющие оптические свойства глаза

9 – прозрачная студенистая масса (глазное дно)

10 – сетчатка (7млн колбочек, 130млн палочек, которые реагируют на свет разной частоты неодинаково)

11 – разветвление зрительного нерва

Глаз это 90% информации, система линз. Диаметр глаза ̴23мм



Основные свойства глаза

Аккомодация свойство глаза, обеспечивающее четкое восприятие разноудаленных предметов. Изменяется главный фокус глаза от 16 до 13мм. Оптическая сила глаза от 60 до 75дптр. Предельный угол зрения ϕ = 1̕ . С приближением предмета увеличивается угол зрения ϕ, под которым мы видим две близкие точки предмета



Адаптация приспосабливаемость к различным условиям освещенности

Поле зрения : по оси ΟΧ 150 ͦ, по оси ОΥ 125 ͦ

Спектральная чувствительность от 380 до 760нм. Самая большая чувствительность 555нм(зеленый цвет)

Острота зрения свойство глаза раздельно различать две близкие точки

Расстояние наилучшего зрения 250мм. Дальние предметы глаз видит без напряжения.



Недостатки глаза Глаз не может создать резкое изображение на сетчатке

Дальнозоркость – дефект зрения, состоящий в том, что изображение предмета в ненапряженном состоянии глаза получается за сетчаткой.

Близорукость – дефект зрения, когда глаз в ненапряженном состоянии создает изображение удаленного предмета не на сетчатке, а перед ней, т.е. не может видеть удаленные предметы





Проекционный аппарат S – источник света,R – рефлектор(вогнутое зеркало),D – прозрачный диапозитив,K – конденсатор(плоско-выпуклые линзы),О – объектив, расположенный в фокусе конденсатора, который проецирует освещенный диапозитив на экран. Для получения четкого изображения на экране диапозитив помещают от объектива на расстоянии d, удовлетворяющем условию: F ˂ d ˂2F. Чем дальше экран,тем больше d .



Фотоаппарат

К – светонепроницаемая камера,

О – объектив(может перемещаться относительно пленки),

П – пленка или пластина(светочувствительная),

ВА – предмет, А1В1 – изображение.



Увеличить угол зрения можно, используя лупу, микроскоп:

Так как = ,



Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Линзы и их типы

Линзой называется прозрачное тело, ограниченное двумя криволинейными (чаще всего сферическими) или криволинейной и плоской поверхностями. Линзы делятся на выпуклые и вогнутые.

Линзы, у которых середина толще, чем края, называются выпуклыми. Линзы, у которых середина тоньше, чем края, называются вогнутыми.

Если показатель преломления линзы больше, чем показатель преломления окружающей среды, то в выпуклой линзе параллельный пучок лучей после преломления преобразуется в сходящий пучок. Такие линзы называются собирающими (рис. 89, а). Если в линзе параллельный пучок преобразуется в расходящийся пучок, то эти линзы называются рассеивающими (рис. 89, б). Вогнутые линзы, у которых внешней средой служит воздух, являются рассеивающими.

O 1 , О 2 - геометрические центры сферических поверхностей, ограничивающих линзу. Прямая О 1 О 2 , соединяющая центры этих сферических поверхностей, называется главной оптической осью. Обычно рассматриваем тонкие линзы, у которых толщина мала по сравнению с радиусами кривизны ее поверхностей, поэтому точки C 1 и С 2 (вершины сегментов) лежат близко друг к другу, их можно заменить одной точкой О, называемой оптическим центром линзы (см. рис. 89а). Всякая прямая, проведенная через оптический центр линзы под углом к главной оптической оси, называется побочной оптической осью(А 1 A 2 B 1 B 2).

Если на собирающую линзу падает пучок лучей, параллельных главной оптической оси, то после преломления в линзе они собираются в одной точке F, которая называется главным фокусом линзы (рис. 90, а).

В фокусе рассеивающей линзы пересекаются продолжения лучей, которые до преломления были параллельны ее главной оптической оси (рис. 90, б). Фокус рассеивающей линзы мнимый. Главных фокусов - два; они расположены на главной оптической оси на одинаковом расстоянии от оптического центра линзы по разные стороны.

Величина, обратная фокусному расстоянию линзы, называется ее оптической силой. Оптическая сила линзы - D.

За единицу оптической силы линзы в СИ принимают диоптрию. Диоптрия - оптическая сила линзы, фокусное расстояние которой равно 1 м.

Оптическая сила собирающей линзы положительная, рассеивающей - отрицательная.

Плоскость, проходящая через главный фокус линзы перпендикулярно к главной оптической оси, называется фокальной (рис. 91). Пучок лучей, падающих на линзу параллельно какой-либо побочной оптической оси, собирается в точке пересечения этой оси с фокальной плоскостью.

Построение изображения точки и предмета в собирающей линзе.

Для построения изображения в линзе достаточно взять по два луча от каждой точки предмета и найти их точку пересечения после преломления в линзе. Удобно пользоваться лучами, ход которых после преломления в линзе известен. Так, луч, падающий на линзу параллельно главной оптической оси, после преломления в линзе проходит через главный фокус; луч, проходящий через оптический центр линзы, не преломляется; луч, проходящий через главный фокус линзы, после преломления идет параллельно главной оптической оси; луч, падающий на линзу параллельно побочной оптической оси, после преломления в линзе проходит через точку пересечения оси с фокальной плоскостью.

Пусть светящаяся точка S лежит на главной оптической оси.

линза выпуклый вогнутый радар

Выбираем произвольно луч и параллельно ему проводим побочную оптическую ось (рис. 92). Через точку пересечения побочной оптической оси с фокальной плоскостью пройдет выбранный луч после преломления в линзе. Точка пересечения данного луча с главной оптической осью (второй луч) даст действительное изображение точки S - S`.

Рассмотрим построение изображения предмета в выпуклой линзе.

Пусть точка лежит вне главной оптической оси, тогда изображение S` можно построить с помощью любых двух лучей, приведенных на рис. 93.

Если предмет расположен в бесконечности, то лучи пересекутся в фокусе (рис. 94).

Если предмет расположен за точкой двойного фокуса, то изображение получится действительным, обратным, уменьшенным (фотоаппарат, глаз) (рис. 95).

Если предмет расположен в точке двойного фокуса, то изображение получится действительным, обратным, равным предмету (рис. 96).

Если предмет расположен между фокусом и точкой двойного фокуса, то изображение получится действительным, обратным, увеличенным (фотоувеличитель, киноаппарат, фильмоскоп) (рис. 97).

Если предмет расположен в фокусе, то изображение будет в бесконечности (изображения не будет) (рис. 98).

Если предмет расположен между фокусом и оптическим центром линзы, то изображение будет мнимым, прямым, увеличенным (лупа) (рис. 99).

При любом расстоянии от предмета до рассеивающей линзы она дает мнимое, прямое, уменьшенное изображение (рис. 100).

В зависимости от форм различают собирающие (положительные) и рассеивающие (отрицательные) линзы. К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих - линзы, края которых толще середины. Следует отметить, что это верно только если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например пузырёк воздуха в воде - двояковыпуклая рассеивающая линза.

Линзы характеризуются, как правило, своей оптической силой (измеряется вдиоптриях), и фокусным расстоянием.

Для построения оптических приборов с исправленной оптической аберрацией (прежде всего - хроматической, обусловленной дисперсией света, - ахроматы иапохроматы) важны и иные свойства линз и их материалов, например, коэффициент преломления, коэффициент дисперсии, коэффициент пропускания материала в выбранном оптическом диапазоне.

Иногда линзы / линзовые оптические системы (рефракторы) специально рассчитываются на использование в средах с относительно высоким коэффициентом преломления (см. иммерсионный микроскоп, иммерсионные жидкости).

Виды линз:

Собирающие :

1 - двояковыпуклая

2 - выпукло-плоская

3 - выпукло-вогнутая (положительный(выпуклый) мениск)

Рассеивающие :

4 - двояковогнутая

5 - плоско-вогнутая

6 - выпукло-вогнутая (отрицательный(вогнутый) мениск)

Выпукло-вогнутая линза называется мениском и может быть собирательной (утолщается к середине), рассеивающей (утолщается к краям) или телескопической (фокусное расстояние равно бесконечности). Так, например линзы очков для близоруких - как правило, отрицательные мениски.

Вопреки распространённому заблуждению, оптическая сила мениска с одинаковыми радиусами не равно нулю, а положительна, и зависит от показателя преломления стекла и от толщины линзы. Мениск, центры кривизны поверхностей которого находятся в одной точке называется концентрической линзой (оптическая сила всегда отрицательна).

Отличительным свойством собирательной линзы является способность собирать падающие на её поверхность лучи в одной точке, расположенной по другую сторону линзы.

Применение

Линзы являются универсальным оптическим элементом большинства оптических систем.

Традиционное применение линз - бинокли, телескопы, оптические прицелы, теодолиты, микроскопы и фотовидеотехника. Одиночные собирающие линзы используются как увеличительные стёкла.

Другая важная сфера применения линз офтальмология, где без них невозможно исправление недостатков зрения - близорукости, дальнозоркости, неправильной аккомодации, астигматизма и других заболеваний. Линзы используют в таких приспособлениях, как очки и контактные линзы.

В радиоастрономии и радарах часто используются диэлектрические линзы, собирающие поток радиоволн в приёмнуюантенну, либо фокусирующие на цели.

В конструкции плутониевых ядерных бомб для преобразования сферической расходящейся ударной волны от точечного источника (детонатора) в сферическую сходящуюся применялись линзовые системы, изготовленные из взрывчатки с разной скоростью детонации (то есть с разным коэффициентом преломления).

Размещено на Allbest.ru

Подобные документы

    Классификация и типы полимеров, их общая характеристика и сферы практического применения, свойства: механические, теплофизические, химические, электрические, технологические. Типы полиимидов, производимых компанией Fujifilm, требования к термообработке.

    дипломная работа , добавлен 26.03.2015

    Разработка конструкции осесимметричной магнитной линзы для электронов. Определение сечения магнитопровода, методика проведения теплового расчета. Выбор конструкции линзы, расчет толщины железа необходимой для обеспечения в нем заданной магнитной индукции.

    контрольная работа , добавлен 04.10.2013

    Сущность линзы, классификация ее выпуклой (собирающей) и вогнутой (рассеивающей) форм. Понятие фокуса линзы и фокусного расстояния. Особенности построения изображения в линзе в зависимости от пути луча после его преломления и местонахождения предмета.

    презентация , добавлен 22.02.2012

    Типы солнечных коллекторов: плоские, вакуумные и воздушные. Их конструкции, принцип действия, преимущества и недостатки, применение. Устройство бытового коллектора. Солнечные башни. Параболоцилиндрические и параболические концентраторы. Линзы Френеля.

    реферат , добавлен 18.03.2015

    Классическая теория колебательных спектров и их квантово-механическое представление. Принцип работы и внутреннее устройство инфракрасных спектрометров, их классификация и типы, функциональные особенности, условия и сферы практического применения.

    курсовая работа , добавлен 21.01.2017

    Элементарная теория тонких линз. Определение фокусного расстояния по величине предмета и его изображения и по расстоянию последнего от линзы. Определение фокусного расстояния по величине перемещения линзы. Коэффициент увеличения линзы.

    лабораторная работа , добавлен 07.03.2007

    Сущность и физическое обоснование явления голографии как восстановления изображения предмета. Свойства источников: когерентность, поляризация, длина волны света. Классификация и типы голографии, сферы практического применения данного явления, технологии.

    реферат , добавлен 11.06.2013

    Обзор особенностей преломления и отражения света на сферических поверхностях. Определение положения главного фокуса преломляющей поверхности. Описания тонких сферических линз. Формула тонкой линзы. Построение изображений предметов с помощью тонкой линзы.

    реферат , добавлен 10.04.2013

    Конвекция как перенос энергии струями жидкости или газа, ее закономерности и значение. Сферы и направления практического применения данного явления, и основные факторы, влияющие на его интенсивность. Классификация, разновидности и механизмы конвекции.

    презентация , добавлен 14.04.2011

    Сущность и типы тепловых преобразователей, принцип их действия и назначение, сферы практического использования, этапы изготовления. Характеристика стандартных общепринятых типов подключения термопары к измерительным и преобразовательным приборам.

Линза - прозрачное тело, которое ограничено двумя сферическими поверхностями. Основным свойством линз является способность давать изображения предметов. Они могут быть мнимыми и действительными, перевернутыми и прямыми, уменьшенными и увеличенными. Линейные размеры изображения изменяются в зависимости от расположения предметов.

Увеличение линзы - отношение линейных размеров изображения и предмета. Коэффициент увеличения (К) может быть выражен по формуле: К= u/v, где u является расстоянием от линзы до предмета, а v - расстоянием от линзы до изображения. Коэффициент увеличения является показателем того, насколько линейные размеры предмета больше или меньше размеров изображения.

В науке существуют такие понятия, как собирающая линза и рассеивающая. Первая толще в середине, а у края тоньше, у второй - все наоборот. Линзы характеризуются фокусным расстоянием (от оптического центра до фокуса: у рассеивающей линзы оно является отрицательным, а у собирающей - положительным) и оптической силой, которую измеряют в диоптриях. одной диоптрии составляет 1 метр. Оптическая сила зависит от радиусов кривизны сферических поверхностей линзы, а также материала (показателя его преломления), из которого изготовлена. Она является величиной, обратной фокусному расстоянию.

Собирающая линза имеет следующие отличия от рассеивающей:

    Собирает свет.

    Края тоньше середины.

    Представляет собой совокупность большого числа расширяющихся к середине линзы (а не к краям) треугольных призм.

    Фокус линзы (то есть точка пересечения лучей после преломления, расположенная на главной оптической оси), является действительным (а не мнимым), поскольку пересекаются сами лучи, а не их продолжения.

    Способна собирать лучи, падающие на поверхность в одной точке, которая расположена с другой стороны линзы.

  1. Собирающая линза может направляться к предмету любой стороной, и лучи при этом будут собираться, поскольку такая линза имеет 2 фокуса. На оптической оси передний и задний фокусы расположены по обе ее стороны на фокусном расстоянии от основных точек линзы.

    Материалы для линз

Похожие статьи