Нарушение пигментного обмена методы определения желчных пигментов. Роль печени в пигментном обмене

19.07.2019

При физиологических условиях концентрация билирубина в плазме составляет 0,3-1,0 мг/дл (5,1-17,1 мкмоль/л). Если уровень билирубина в плазме составляет около 3 мг/дл (50 мкмоль/л), то клинически это проявляется в форме желтушного окрашивания склер, слизистых оболочек и кожи.

Билирубин происходит из ферментативного разрушения гемоглобина или гемопротеинов (цитохром Р 450 , цитохром В 5 , каталаза, триптофанпирролаза, миоглобин). Таким образом, образованный билирубин представляет собой субстрат для билирубин-УДФ-глюкуронилтрансферазы, содержащейся в эндоплазматическом ретикулуме. УДФ-глюкуронилтранс-фераза катализирует образование билирубинмоноглюкуронидов. Затем происходит синтез билирубиндиглюкуронидов, осуществляемый УДФ-глюкуронилтрансферазой. Посредством глюкуронирования нерастворимый в воде билирубин приобретает водорастворимость.

Главным источником образования билирубина является гем гемоглобина. Около 70% ежедневно образующихся желчных пигментов возникают из гемоглобина при распаде эритроцитов в ретикуло-эндотелиальной системе (в селезенке, костном мозге и в печени).

В плазме транспортируется как конъюгированный с глюкуроновой кислотой билирубин, так и неконъюгированный, связанный с альбумином билирубин. При этом конъюгированный с глюкуроновой кислотой билирубин характеризуется незначительным сродством с альбумином. Таким образом, незначительная часть билирубинглюкуронида при желтухе не связана с альбумином, она фильтруется через клубочки. Небольшая часть не реабсорбируется в канальцах, а выделяется с мочой и обусловливает наблюдаемую при холестазе билирубинурию.

В печени находящийся в плазме крови связанный с альбумином неконъюгированный билирубин, а также конъюгированный с глюкуроновой кислотой билирубин очень быстро воспринимается синусоидной стороной гепатоцитов. Захват гепатоцитами билирубина осуществляется с помощью рецепторных белков и подчиняется кинетике насыщения по Михаэлису-Ментену. Конгъюгированный билирубин, бромсульфалеин и синдоциановый зеленый также воспринимаются теми же рецепторными белками на синусоидной стороне гепатоцитов, в то время как желчные кислоты не конкурируют с билирубином за поглощение их гепатоцитами.

После конъюгации глюкуронированный билирубин, вероятно, с помощью переносчика, поступает в желчь. Поскольку неконъюгированный билирубин растворим в желчи, то этим объясняется частота образования билирубиновых пигментных желчных камней при хроническом гемолизе.

В желчных путях и в кишке сецернируемый билирубинглюкуронид не всасывается, но проходит через тонкий кишечник и гидролизуется в терминальном отделе тонкой кишки и толстой кишки при помощи бактериальной -глюкуронидазы. Билирубин восстанавливается бактериями толстого кишечника до уробилиногена и частично окисляется до уробилина в фекалиях. Не менее чем 20% ежедневно образуемого в толстом кишечнике уробилиногена участвуют в кишечно-печеночном цикле: он всасывается в тонком кишечнике, транспортируется в желчь, в то время как оставшиеся 10% находятся в периферической циркуляции и затем выводятся с мочой. При гемолизе, гепатоцеллюлярных заболеваниях печени и при портосистемном шунте выведение уробилина в моче увеличивается.

Пигментный обмен

Под пигментным обменом подразумевают обычно все процессы образования, превращения и распада пигмента крови (гемоглобина), точнее его пигментной небелковой части, и главного деривата этого пигмента-- желчного пигмента (билирубина). В настоящее время однако известны и другие пигменты, которые по хим. составу по - видимому, близки НЬ -- это-НЬ мышц, цитохромы, дыхательный фермент Варбурга (Warburg) и другие еще весьма мало изученные пигменты. Отделить процессы образования, превращения и распада этих пигментов от процессов обмена НЬ пока невозможно. В более широком смысле под П..о. можно подразумевать процессы образования, превращения и распада всех пигментов организма, т. е. как вышеперечисленных пигментов, группы НЬ, так и всех других пигментов-- меланина, липохромов и т. д.

ФИЗИОЛОГИЯ ОБМЕНА БИЛИРУБИНА

Процесс превращения свободного (непрямого) билирубина, образующегося при разрушении эритроцитов и распаде гемоглобина в органах ретикулоэндотелиальной системы (РЭС), в билирубин-диглюкуронид (связанный, или прямой билирубин) в печеночной клетке (рис. 1) осуществляется в три этапа (на рисунке обозначены римскими цифрами):

Рис. 1.

Бн - свободный (непрямой) билирубин; Б-Г - билирубин-глюкуронид (связанный, или прямой билирубин); Мбг - мезобилиноген (уробилиноген).

Римскими цифрами обозначены этапы обезвреживания

1. I этап -- захват билирубина (Б) печеночной клеткой после отщепления альбумина;

2. II этап -- образование водорастворимого комплекса билирубин-диглюкуронида (Б-Г);

3. III этап -- выделение образовавшегося связанного (прямого) билирубина (Б-Г) из печеночной клетки в желчные канальцы (проточки).

Дальнейший метаболизм билирубина связан с поступлением его в желчные пути и кишечник. В нижних отделах желчевыводящих путей и кишечнике под воздействием микробной флоры происходит постепенное восстановление связанного билирубина до уробилиногена. Часть уробилиногена (мезобилиноген) всасывается в кишечнике и по системе воротной вены вновь попадает в печень, где в норме происходит практически полное его разрушение (см. рис. 1). Другая часть уробилиногена (стеркобилиноген) всасывается в кровь в геморроидальных венах, попадая в общий кровоток и выделяясь почками с мочой в незначительных количествах в виде уробилина, который часто не выявляется клиническими лабораторными методами. Наконец, третья часть уробилиногена превращается в стеркобилин и выделяется с калом, обусловливая его характерную темно-коричневую окраску.

Методы определения билирубина и его метаболитов

Определение билирубина в сыворотке крови

В клинической практике используются различные методы определения билирубина и его фракций в сыворотке крови.

Наиболее распространенным из них является биохимический метод Ендрассика-Грофа . Он основан на взаимодействии билирубина с диазотированной сульфаниловой кислотой с образованием азопигментов. При этом связанный билирубин (билирубин-глюкуронид) дает быструю («прямую») реакцию с диазореактивом, тогда как реакция свободного (не связанного с глюкуронидом) билирубина протекает значтельно медленнее. Для ее ускорения применяют различные вещества-акселераторы, например кофеин (метод Ендрассика-Клеггорна-Грофа), которые освобождают билирубин из белковых комплексов («непрямая» реакция). В результате взаимодействия с диазотированной сульфаниловой кислотой билирубин образует окрашенные соединения. Измерения проводят на фотометре.

ХОД ОПРЕДЕЛЕНИЯ

В 3 пробирки (2 опытные пробы и холостая) вводят реактивы, как указано в таблице. Диазореакция

Для определения связанного билирубина измерение проводят спустя 5--10 мин после добавления диазосмеси, так как при длительном стоянии в реакцию вступает несвязанный билирубин. Для определения общего билирубина пробу для развития окраски оставляют стоять 20 мин, после чего измеряют на фотометре. При дальнейшем стоянии окраска не изменяется. Измерение проводят при длине волны 500--560 нм (зеленый светофильтр) в кювете с толщиной слоя в 0,5 см против воды. Из показателей, полученных при измерении общего и связанного билирубина, вычитают показатель холостой пробы. Расчет производят по калибровочному графику. Находят содержание общего и связанного билирубина.Метод Ендрассика, Клеггорна и Грофа прост, удобен в практике, не связан с применением дефицитных реактивов и является наиболее приемлемым для практических лабораторий.Определение рекомендуется приводить сразу же после забора проб, чтобы избежать окисления билирубина на свету. Гемолиз сыворотки снижает количество билирубина пропорционально присутствию гемоглобина. Следовательно, сыворотка крови не должна быть гемолизирована.

Ряд веществ -- гидрокортизон, андрогены, эритромицин, глюкокортикоиды, фенобарбитал, аскорбиновая кислота -- вызывают интерференцию.

Постоение калибровочного графика при методе ендрассика.

Способ I -- Шелонга-Вендес использованием стабилизирующего свойства белка сыворотки крови. Основной раствор билирубина: в колбе вместимостью 50 мл растворяют 40 мг билирубина в 30--35 мл 0,1 моль/л раствора карбоната натрия Na 2 CO 3 . Хорошо взбалтывают, не допуская образования пузырьков. Доводят до 50 мл 0,1 моль/л раствором Nа 2 СО 3 и несколько раз перемешивают. Раствор стоек только в течение 10 мин от начала приготовления. В дальнейшем происходит окисление билирубина. Рабочий раствор билирубина: к 13,9 мл свежей негемолизированной сыворотки здорового человека добавляют 2 мл свежеприготовленного основного раствора билирубина и 0,1 мл 4 моль/л раствора уксусной кислоты. Хорошо перемешивают. При этом выделяются пузырьки углекислого газа. Рабочий раствор стоек в течение нескольких дней. Этот раствор содержит точно на 100 мг/л, или 171 мкмоль/л, билирубина больше, чем сыворотка, взятая для приготовления раствора. Чтобы исключить при расчетах количество билирубина, содержащегося в этой сыворотке, при измерении на фотометре из величин экстинкции калибровочных проб вычитают величины экстинкции соответствующих разведений компенсационной жидкости. Для приготовления компенсационной жидкости смешивают 13,9 мл той же сыворотки, которая использовалась для приготовления калибровочного раствора билирубина, 2 мл 0,1 моль/л раствора карбоната натрия и 0,1 мл 4 моль/л раствора уксусной кислоты. Для построения калибровочного графика готовят ряд разведений с различным содержанием билирубина. К полученным разведениям прибавляют по 1,75 мл кофеинового реактива и по 0,25 мл диазосмеси. При появлении помутнения можно добавить по 3 капли 30%-ного раствора едкого натра. Измерение проводят при тех же условиях, что и в опытных пробах, через 20 мин. Из компенсационной жидкости готовят разведения, аналогичные калибровочным (как указано ниже), и далее обрабатывают их так же, как калибровочные пробы.

Таблица. Определение связанного билирубина

· Способ второй - выстраивать калибровочный график по готовому набору реактивов.(Например, набор Билирубин -эталон фирмы Лахема, включающий в себя билирубин лиофилизированный (точная концентрация билирубина приведена на этикетке флакона); и альбумин лиофилизированный.)

В физиологических условиях в организме (весом 70 кг) обрадуется за сутки примерно 250-300 мг билирубина. 70-80% этого количества приходится на гемоглобин эритроцитов, подвергающихся разрушению в селезенке. Ежедневно разрушается примерно около 1% эритроцитов или 6-7 г гемоглобина. Из каждого грамма гемоглобина образуется примерно 35 мг билирубина. 10-20% билирубина освобождается при расщеплении некоторых гемопротеинов, содержащих гем (миоглобин, цитохромы, каталаза и др.). Небольшая часть билирубина выделяется из костного мозга при лизисе незрелых эритроидных клеток костного мозга. Основным продуктом расщепления гемопротеинов является билирубин IX, продолжительность циркуляции которого в крови составляет 90 мин. Билирубин является продуктом последовательных стадий превращения гемоглобина, и в норме его содержание в крови не превышает 2 мг% или 20 мкмоль/л.

Нарушения пигментного обмена могут возникать в результате избыточного образования билирубина или при нарушении его выведения через желчный шунт. В обоих случаях повышается содержание билирубина в плазме крови свыше 20,5 мкмоль/л, возникает иктеричность склер и слизистых. При билирубинемии более 34 мкмоль/л появляется иктеричность кожи.

Вследствие аутокаталитического окисления двухвалентное железо гема переходит в трехвалентное, а сам гем превращается в оксипорфирин и далее – в вердоглобин. Затем железо отщепляется от вердоглобина, и под действием микросомального фермента гемоксигеназы вердоглобин превращается в биливердин, а тот при участии биливердинредуктазы переходит в билирубин. Образующийся таким образом билирубин называется непрямым или свободным, или, более понятно, – неконъюгированным . Он нерастворим в воде, но хорошо растворяется в жирах и поэтому токсичен для головного мозга. Особенно это касается той формы билирубина, которая не связана с альбуминами. Попадая в печень, свободный билирубин под действие фермента глюкуронилтрансферазы образует парные соединения с глюкуроновой кислотой и превращается в конъюгированный, прямой , или связанный билирубин – билирубин моноглюкуронид или билирубин диглюкуронид. Прямой билирубин растворим в воде и менее токсичен для нейронов головного мозга.

Билирубин диглюкуронид с желчью поступает в кишечник, где под действием микрофлоры происходит отщепление глюкуроновой кислоты и образование мезобилирубина и мезобилиногена, или уробилиногена. Часть уробилиногена всасывается из кишечника и по воротной вене поступает в печень, где полностью расщепляется. Возможно поступление уробилина в общий кровоток, откуда он попадает в мочу. Часть мезобилиногена, находящегося в толстой кишке, восстанавливается до стеркобилиногена под влиянием анаэробной микрофлоры. Последний выделяется с калом в виде окисленной формы стеркобилина. Принципиальной разницы между стеркобилинами и уробилинами нет. Поэтому в клинике их называют уробилиновыми и стеркобилиновыми телами. Таким образом, в норме в крови находят общий билирубин 8-20 мкмоль/л, или 0,5-1,2 мг%, из которого 75% относится к неконъюгированному билирубину, 5% – билирубин-моноглюкуронид, 25% – билирубин-диглюкуронид. В моче обнаруживается до 25 мг/л в сутки уробилиногеновых тел.


Возможности печеночной ткани образовывать парные соединения билирубина с глюкуроновой кислотой очень высоки. Поэтому если образование прямого билирубина не нарушено, а имеется расстройство внешнесекреторной функции гепатоцитов, уровень билирубинемии может достигать значений от 50 до 70 мкмоль/л. При повреждении паренхимы печени содержание билирубина в плазме повышается до 500 мкмоль/л и более. В зависимости от причины (надпеченочная, печеночная, подпеченочная желтухи) в крови может повышаться прямой и непрямой билирубин (Таблица 3).

Билирубин плохо растворим в воде и плазме крови. Он образует специфическое соединение с альбумином по высокоаффинному центру (свободный, или непрямой билирубин) и транспортируется в печень. Билирубин в избыточном количестве непрочно связывается с альбумином, поэтому легко отщепляется от белка и диффундирует в ткани. Некоторые антибиотики и другие лекарственные вещества, конкурирующие с билирубином за высокоаффинный центр альбумина, способны вытеснять билирубин из комплекса с альбумином.

Желтуха (icterus) – синдром, характеризующийся желтушным окрашиванием кожи, слизистых, склер, мочи, жидкости полостей тела в результате отложения и содержания в них желчных пигментов – билирубина при нарушениях желчеобразования и желчевыделения.

По механизму развития выделяют три вида желтух:

  • Надпеченочная , или гемолитическая желтуха, связанная с повышенным желчеобразованием вследствие усиленного распада эритроцитов и гемоглобин содержащих эритрокариоцитов (например, при В 12 , фолиево-дефицитных анемиях);

· Печеночная , или паренхиматозная желтуха, вызванная нарушением образования и выделения желчи гепатоцитами при их повреждении, холестазе и энзимопатиях;

· Подпеченочная , или механическая желтуха, возникающая в результате механического препятствия выделению желчи по желчевыводящим путям.

Надпеченочная, или гемолитическая, желтуха. Этиология : причины следует связать с усиленным гемолизом эритроцитов и разрушением гемоглобинсодержащих эритрокариоцитов в результате неэффективного эритропоэза (острый гемолиз, вызванный разными факторами, врожденные и приобретенные гемолитические анемии, дизэритропоэтические анемии и т.п.).

Патогенез . Усиленный против нормы распад эритроцитов ведет к увеличенному образованию свободного, непрямого, неконъюгированного билирубина, который является токсичным для ЦНС и других тканей, в т.ч. для гемопоэтических клеток костного мозга (развитие лейкоцитоза, сдвиг лейкоцитарной формулы влево). Хотя печень обладает значительными возможностями для связывания и образования неконъюгированного билирубина, при гемолитических состояниях возможна функциональная ее недостаточность или даже повреждение. Это ведет к понижению способности гепатоцитов связывать неконъюгированный билирубин и далее превращать его в конъюгированный. Содержание билирубина в желчи увеличивается, что является фактором риска для образования пигментных камней.

Таким образом, не весь свободный билирубин подвергается переработке в конъюгированный, поэтому определенная его часть в избыточном количестве циркулирует в крови.

  • Это получило наименование (1) гипербилирубинемия (более 2 мг%) за счет неконъюгированного билирубина.
  • (2) ряд тканей организма испытывает токсическое действие прямого билирубина (сама печень, центральная нервная система).
  • (3) вследствие гипербилирубинемии в печени и других экскреторных органах образуется избыточное количество желчных пигментов:
    • (а) глюкурониды билирубина,
    • (б) уробилиноген,
    • (в) стеркобилиноген, (что ведет к усиленному их выведению),
  • (4) выведение избыточного количества уробилиновых и стеркобилиновых тел с калом и мочой.
  • (5) вместе с тем, имеет место гиперхолия – темная окраска кала.

Итак, при гемолитической желтухе наблюдаются:

Гипербилирубинемия за счет неконъюгированного билирубина; повышенное образование уробилина ; повышенное образование стеркобилина ; гиперхолический кал; отсутствие холемии , т.е. в крови не обнаруживается повышенного содержания желчных кислот.

Печеночная, или паренхиматозная, желтуха. Этиология. Причины печеночной желтухи разнообразны

  • Инфекции (вирусы гепатита A, B, C , сепсис и т.п.);

· Интоксикации (отравление грибным ядом, алкоголем, мышьяком, лекарственными препаратами и т.п.). Считается, например, что около 2% всех случаев желтух у госпитализированных больных имеют лекарственное происхождение;

  • Холестаз (холестатический гепатит);
  • Генетический дефект ферментов, обеспечивающих транспорт неконъюгированного билирубина, ферментов, обеспечивающих конъюгирование билирубина – глюкуронилтрансферазы.
  • При генетически обусловленных заболеваниях (например, синдром Криглера-Найяра, синдром Дабина-Джонсона и др.) Имеется ферментативный дефект в реакции конъюгации и при секреции. У новорожденных может быть транзиторная ферментативная недостаточность, проявляющаяся в гипербилирубинемии.

Патогенез. При повреждении гепатоцитов, как это бывает при гепатитах или приеме гепатотропных веществ, в разной степени нарушаются процессы биотрансформации и секреции, что отражается в соотношении прямого и непрямого билирубина. Однако обычно преобладает прямой билирубин. При воспалительных и иных повреждениях гепатоцитов возникают сообщения между желчными путями, кровеносными и лимфатическими сосудами, через которое желчь поступает в кровь (и лимфу) и частично в желчевыводящие пути. Этому же может способствовать отек перипортальных пространств. Набухшие гепатоциты сдавливают желчные протоки, чем создаются механические затруднения оттоку желчи. Метаболизм и функции печеночных клеток нарушаются, что сопровождается следующими симптомами:

· Гипербилирубинемия за счет конъюгированного и, в меньшей степени, непрямого билирубина. Повышение содержания неконъюгированного билирубина обусловлено снижением активности глюкуронилтрасферазы в поврежденных гепатоцитах и нарушением образования глюкуронидов.

  • Холалемия – наличие в крови желчных кислот.
  • Увеличение в крови конъюгированного растворимого в воде билирубина ведет к появлению в моче билирубина – билирубинурия , а дефицит желчи в просвете кишечника – постепенному снижению содержания уробилина в моче вплоть до полного его отсутствия. Прямой билирубин является водорастворимым соединением. Поэтому он фильтруется через почечный фильтр и выводится с мочой
  • Снижение количества стеркобилина вследствие ограниченного его образования в кишках, куда поступает уменьшенное количество глюкуронидов билирубина в составе желчи.
  • Снижение количества желчных кислот в кишечном химусе и кале вследствие гипохолии. Уменьшенное поступление желчи в кишечник (гипохолия) вызывает расстройства пищеварения.
  • Более весомое значение имеют нарушения межуточного обмена белков, жиров и углеводов, а также дефицит витаминов. Снижается защитная функция печени, страдает свертывающая функция крови.

Таблица 3

Патогенетические механизмы гипербилирубинемии

Пигментный обмен

Под пигментным обменом подразумевают обычно все процессы образования, превращения и распада пигмента крови (гемоглобина), точнее его пигментной небелковой части, и главного деривата этого пигмента- желчного пигмента (билирубина). В настоящее время однако известны и другие пигменты, которые по хим. составу по – видимому, близки НЬ - это-НЬ мышц, цитохромы, дыхательный фермент Варбурга (Warburg) и другие еще весьма мало изученные пигменты. Отделить процессы образования, превращения и распада этих пигментов от процессов обмена НЬ пока невозможно. В более широком смысле под П..о. можно подразумевать процессы образования, превращения и распада всех пигментов организма, т. е. как вышеперечисленных пигментов, группы НЬ, так и всех других пигментов- меланина, липохромов и т. д.

ФИЗИОЛОГИЯ ОБМЕНА БИЛИРУБИНА

Процесс превращения свободного (непрямого) билирубина, образующегося при разрушении эритроцитов и распаде гемоглобина в органах ретикулоэндотелиальной системы (РЭС), в билирубин-диглюкуронид (связанный, или прямой билирубин) в печеночной клетке (рис. 1) осуществляется в три этапа (на рисунке обозначены римскими цифрами):


Рис. 1. Процессы обезвреживания свободного (непрямого) билирубина и мезобилиногена (уробилиногена) в печеночной клетке.

Бн - свободный (непрямой) билирубин; Б-Г - билирубин-глюкуронид (связанный, или прямой билирубин); Мбг - мезобилиноген (уробилиноген).

Римскими цифрами обозначены этапы обезвреживания

1. I этап - захват билирубина (Б) печеночной клеткой после отщепления альбумина;

2. II этап - образование водорастворимого комплекса билирубин-диглюкуронида (Б-Г);

3. III этап - выделение образовавшегося связанного (прямого) билирубина (Б-Г) из печеночной клетки в желчные канальцы (проточки).

Дальнейший метаболизм билирубина связан с поступлением его в желчные пути и кишечник. В нижних отделах желчевыводящих путей и кишечнике под воздействием микробной флоры происходит постепенное восстановление связанного билирубина до уробилиногена. Часть уробилиногена (мезобилиноген) всасывается в кишечнике и по системе воротной вены вновь попадает в печень, где в норме происходит практически полное его разрушение (см. рис. 1). Другая часть уробилиногена (стеркобилиноген) всасывается в кровь в геморроидальных венах, попадая в общий кровоток и выделяясь почками с мочой в незначительных количествах в виде уробилина, который часто не выявляется клиническими лабораторными методами. Наконец, третья часть уробилиногена превращается в стеркобилин и выделяется с калом, обусловливая его характерную темно-коричневую окраску.

Методы определения билирубина и его метаболитов

Определение билирубина в сыворотке крови

В клинической практике используются различные методы определения билирубина и его фракций в сыворотке крови.

Наиболее распространенным из них является биохимический метод Ендрассика-Грофа . Он основан на взаимодействии билирубина с диазотированной сульфаниловой кислотой с образованием азопигментов. При этом связанный билирубин (билирубин-глюкуронид) дает быструю («прямую») реакцию с диазореактивом, тогда как реакция свободного (не связанного с глюкуронидом) билирубина протекает значтельно медленнее. Для ее ускорения применяют различные вещества–акселераторы, например кофеин (метод Ендрассика-Клеггорна-Грофа), которые освобождают билирубин из белковых комплексов («непрямая» реакция). В результате взаимодействия с диазотированной сульфаниловой кислотой билирубин образует окрашенные соединения. Измерения проводят на фотометре.

ХОД ОПРЕДЕЛЕНИЯ

В 3 пробирки (2 опытные пробы и холостая) вводят реактивы, как указано в таблице. Диазореакция


Для определения связанного билирубина измерение проводят спустя 5-10 мин после добавления диазосмеси, так как при длительном стоянии в реакцию вступает несвязанный билирубин. Для определения общего билирубина пробу для развития окраски оставляют стоять 20 мин, после чего измеряют на фотометре. При дальнейшем стоянии окраска не изменяется. Измерение проводят при длине волны 500-560 нм (зеленый светофильтр) в кювете с толщиной слоя в 0,5 см против воды. Из показателей, полученных при измерении общего и связанного билирубина, вычитают показатель холостой пробы. Расчет производят по калибровочному графику. Находят содержание общего и связанного билирубина.Метод Ендрассика, Клеггорна и Грофа прост, удобен в практике, не связан с применением дефицитных реактивов и является наиболее приемлемым для практических лабораторий.Определение рекомендуется приводить сразу же после забора проб, чтобы избежать окисления билирубина на свету. Гемолиз сыворотки снижает количество билирубина пропорционально присутствию гемоглобина. Следовательно, сыворотка крови не должна быть гемолизирована.

Ряд веществ - гидрокортизон, андрогены, эритромицин, глюкокортикоиды, фенобарбитал, аскорбиновая кислота - вызывают интерференцию.

Постоение калибровочного графика при методе ендрассика.

Способ I - Шелонга-Вендес использованием стабилизирующего свойства белка сыворотки крови. Основной раствор билирубина: в колбе вместимостью 50 мл растворяют 40 мг билирубина в 30-35 мл 0,1 моль/л раствора карбоната натрия Na 2 CO 3 . Хорошо взбалтывают, не допуская образования пузырьков. Доводят до 50 мл 0,1 моль/л раствором Nа 2 СО 3 и несколько раз перемешивают. Раствор стоек только в течение 10 мин от начала приготовления. В дальнейшем происходит окисление билирубина. Рабочий раствор билирубина: к 13,9 мл свежей негемолизированной сыворотки здорового человека добавляют 2 мл свежеприготовленного основного раствора билирубина и 0,1 мл 4 моль/л раствора уксусной кислоты. Хорошо перемешивают. При этом выделяются пузырьки углекислого газа. Рабочий раствор стоек в течение нескольких дней. Этот раствор содержит точно на 100 мг/л, или 171 мкмоль/л, билирубина больше, чем сыворотка, взятая для приготовления раствора. Чтобы исключить при расчетах количество билирубина, содержащегося в этой сыворотке, при измерении на фотометре из величин экстинкции калибровочных проб вычитают величины экстинкции соответствующих разведений компенсационной жидкости. Для приготовления компенсационной жидкости смешивают 13,9 мл той же сыворотки, которая использовалась для приготовления калибровочного раствора билирубина, 2 мл 0,1 моль/л раствора карбоната натрия и 0,1 мл 4 моль/л раствора уксусной кислоты. Для построения калибровочного графика готовят ряд разведений с различным содержанием билирубина. К полученным разведениям прибавляют по 1,75 мл кофеинового реактива и по 0,25 мл диазосмеси. При появлении помутнения можно добавить по 3 капли 30%-ного раствора едкого натра. Измерение проводят при тех же условиях, что и в опытных пробах, через 20 мин. Из компенсационной жидкости готовят разведения, аналогичные калибровочным (как указано ниже), и далее обрабатывают их так же, как калибровочные пробы.

Таблица. Определение связанного билирубина

· Способ второй – выстраивать калибровочный график по готовому набору реактивов.(Например, набор Билирубин –эталон фирмы Лахема, включающий в себя билирубин лиофилизированный (точная концентрация билирубина приведена на этикетке флакона); и альбумин лиофилизированный.)

Определение билирубина в сыворотке крови прямым фотометрическим методом

Определение общего билирубина прямым фотометрическим методом чрезвычайно просто, удобно, не требует венепункции (исследуется капиллярная кровь), может повторяться неоднократно в течение суток. Недостатком метода является невозможность определить фракции билирубина, меньшая точность при выраженном гемолизе.

Несмотря на то, что при этом определяется только общий билирубин, этот подход представляет значительный интерес в неонатологии, так как у новорожденных детей преобладает одна производная билирубина, практически равная концентрации общего билирубина. Билирубин представляет собой пигмент с ярко выраженной желтой окраской. Его спектральная кривая поглощения имеет максимум на длине волны 460 нм (синяя область спектра). Измеряя поглощение на этой длине волны можно было бы определить концентрацию общего билирубина в крови. Однако ряд факторов усложняют такое измерение. Билирубин является сильным поглотителем и поэтому оптимальная для построения фотометра плотность 0,3-0,5 Б оптической плотности достигается в кювете с длиной оптического пути примерно 250 микрометров (0,25 мм).

Изготовить такую кювету непросто. Кроме того, фотометрирование непосредственно крови усложняется присутствием форменных элементов крови, рассеянием света на них, а также интерференцией билирубина с гемоглобином, который частично поглощает свет в синей области спектра. Поэтому для фотометрирования необходимо, во-первых, получить образцы плазмы крови, а, во-вторых, нужно исключить влияние гемоглобина, присутствующего в небольшом количестве в плазме. Плазму для фотометрирования получают на лабораторных центрифугах в гепаринизированных гематокритных капиллярах.

Желтуха не самостоятельное заболевание, а симптом многочисленных заболеваний со сложным патогенезом. Желтуха распознается по характерной окраске кожи и слизистых, плазмы крови, которая развивается в результате накопления в крови желчных пигментов - билирубина и его метаболитов. Желтуха раньше всего появляется на склерах глаз, на нижней поверхности языка, на небе.

Пигментный обмен в норме:

Билирубин - продукт метаболизма гемоглобина. За сутки у человека распадается примерно 1% циркулирующих эритроцитов и образуется 80-95% билирубина, что составляет 200-250 мг. 5-20% приходится на шунтовый билирубин, источником которого является миоглобин, цитохромы, каталаза, пероксидаза, а также процессы "неэффективного гемопоэза". Гемоглобин в клетках макрофагальной системы (печень, селезенка, костный мозг) через ряд промежуточных стадий превращается в билирубин, который поступает в кровь. В крови он практически не растворим, поэтому он соединяется с альбуминами плазмы. Следует отметить, что билирубин - жирорастворимое вещество, поэтому комплекс альбумина с липидами обладает большим сродством к билирубину, чем один альбумин: 1 молекула альбумина может связать 2 молекулы билирубина. При нормальном содержании белка в крови 0,7 мг пигмента содержится в 100 мл плазмы. Следует помнить, что многие эндогенные и экзогенные вещества конкурируют с билирубином за связь с белком. Такой способностью обладают сульфаниламиды, салицилаты, кофеин-бензоат натрия. Поэтому указанные препараты могут способствовать нарастанию желтухи. Соединение билирубина с белком носит название непрямой билирубин. Непрямой, т.к. с диазреактивом Эрлиха он взаимодействует после предварительного осаждения белков спиртом. Непрямой билирубин через почечный барьер не проходит, так как это крупномолекулярное соединение.

Обмен билирубина в печени состоит из трех этапов:

  • 1. Захват из крови пигмента почечной клеткой.
  • 2. Образование коньюгированного билирубина.
  • 3. Экскреция почечной клеткой водорастворимых коньюгатов в желчные капилляры.

Эти звенья протекают в строгой последовательности и при нарушении одного нарушаются другие. Захват билирубина печеночной клеткой - активный процесс, который осуществляется богатой АТФ мембраной васкулярного полюса гепатоцита. Это своего рода концентрирующая система. Благодаря этому уровень в крови пигмента постоянен и не превышает 17 мкмоль/л. В момент захвата билирубина его связь с альбумином разрывается.

Далее билирубин, соединяется с глюкуроновой кислотой с участием фермента глюкуронидтрансферазы. В результате образуется билирубин-моноглюкуронид (желчный пигмент-1) и билирубин-диглюкуронид (желчный пигмент-2). Активность коньюгационной системы подвержена большим колебаниям в зависимости от различных факторов. Так, в период новорожденности активность глюкуронид-трансферазы мала и достигает цифр взрослого организма в течение 2-6 недель после рождения. Билирубин, соединенный с глюкуроновой кислотой, носит название прямой (связанный) билирубин.

Экскреция билирубина почечной клеткой обеспечивается активной концентрирующей системой. Основные компоненты экскреторного аппарата - аппарат Гольджи, билиарная мембрана гепатоцита с микроворсинками и, возможно, лизосомами. Функциональные возможности этой системы ограничены и именно эта система является лимитирующим звеном внутриклеточного метаболизма билирубина. Билирубин в составе желчи находится в виде молекулярных агрегатов, состоящих из холестерина, солей желчных кислот, фосфолипидов и незначительного количества белка. В желчи в норме содержится в 100 раз больше билирубина, чем в крови.

С желчью прямой билирубин попадает в желчные пути и в желчный пузырь. Здесь небольшая часть билирубина превращается в уробилиноген, но основной процесс образования этих соединений представлен в кишечнике. В верхних отделах тонкого кишечника уробилиноген всасывается в кровь и через портальную вену снова возвращается в печень, где в гепатоцитах полностью метаболизируется до дипиррольных соединений (пендиопент), так что в кровь и мочу в норме уробилиноген не попадает. Остальная часть билирубина достигает толстого кишечника и превращается, под действием микробной флоры в стеркобилиноген. Основная часть последнего в нижних отделах кишки окисляется и превращается в стеркобилин. За сутки с калом выделяется 10--250 мг стеркобилина. Лишь небольшая часть стеркобилиногена через систему геморроидальных вен поступает в нижнюю полую вену и через почки выводится с мочой.

Желтухи классифицируются:

  • 1. Надпеченочная (гемолитическая).
  • 2. Печеночная (паренхиматозная и связанная с врожденными нарушениями обмена билирубина в печени).
  • 3. Подпеченочная (механическая).

Надпеченочная (гемолитическая) желтуха.

Связана с усиленным гемолизом эритроцитов при гемолитических анемиях, образованием большого количества непрямого билирубина и невозможностью превращения в печени всего непрямого билирубина в прямой билирубин. Максимальный почечный клиренс билирубина у здоровых людей - 38,9±8,5 мг в 1 мин/кг массы тела, но если это количество будет превышено, то наступает увеличение непрямого билирубина в крови свыше 17 мкмоль/л. Непрямой билирубин проявляет сильное токсическое действие при его концентрации свыше 18-20%. Особенно сильно повреждаются клетки мозговых ядер, развивается билирубиновая энцефалопатия. Усиление образования прямого билирубина в печени приводит к большему образованию стеркобилина и интенсивной окраске кала и моча.

При гемолитической болезни новорожденных (резус-несовместимость эритроцитов матери и плода) может развиться билирубиновая энцефалопатия. Свободный билирубин, не включенный в связь с альбумином, проникает через гематоэнцефалический барьер и окрашивает ядра головного мозга - отсюда термин «ядерная» желтуха. «Ядерная» желтуха - тяжелая форма желтухи новорожденных, при которой желчные пигменты и дегенеративные изменения обнаруживают в ядрах больших полушарий и стволах головного мозга. Характеризуется следующим: у новорожденных на 3-6 день жизни исчезают спинальные рефлексы, отмечается гипертонус мышц туловища, резкий плач, сонливость, беспокойные движения конечностей, судороги, нарушение дыхания, может наступить его остановка и смерть. Если ребенок выживает, то могут развиться глухота, параличи, отставание умственного развития

Печеночная (паренхиматозная) желтуха

Поражение паренхимы печени имеет место при развитии гепатитов под действием гепатотропных токсических и инфекционных агентов.

В гепатоцитах нарушается:

  • - превращение уробилиногена, поступающего обратно из кишечника в печень, в дипирольные соединения.
  • - из-за процесса воспаления, развития отека присоединяется механический компонент, задержка оттока желчи по желчным капиллярам. В результате повреждаются желчные капилляры и печеночные клетки. Все это проходит на фоне повышенной проницаемости микроциркуляторного русла, следовательно, создаются условия для поступления желчи в кровяное русло.
  • - нарушается функция захвата и конъюгации непрямого билирубина.

Клинико - лабораторные проявления.

В крови появляются отсутствующие в норме уробилиноген и прямой билирубин, увеличивается содержание непрямого билирубина. У больных паренхиматозной желтухой, кал обесцвечивается, т.к. в кишечник мало поступает желчи и, следовательно, мало прямого билирубина. Моча интенсивнее окрашена за счет появления в ней уробилиногена и прямого билирубина, т.к. это низкомолекулярные соединения и, следовательно, проходят через почечный барьер.

Подпеченочная (механическая) желтуха

При нарушении оттока желчи по желчным капиллярам или нарушении оттока желчи из желчного пузыря при желчекаменной болезни развивается механическая или обтурационная желтуха. В результате повышения давления желчи в желчных капиллярах, механического повреждения печеночных клеток, желчь поступает в кровяное русло. Это приводит к появлению в крови прямого билирубина, соотношение прямого и непрямого билирубина сдвигается в сторону первого. Стеркобилин в моче и кале исчезает т.к. желчь не поступает в кишечник. Кал у таких больных бесцветный из-за отсутствия стеркобилина. В моче также отсутствует стеркобилин, но ее цвет сохраняется за счет появления в ней прямого билирубина.

НАСЛЕДСТВЕННЫЕ ГЕПАТОЗЫ

К наследственным пигментным гепатозам относятся поражения печени, характеризующиеся гипербилирубинемней, связанной с врожденным дефектом метаболизма билирубина на почве генетически обусловленных энзимопатий: синдромы Жильбера, Криглера - Наджара, Дабина-Джонсона и Ротора. Большинство состояний безвредны и делают пациента «более желтым, чем больным», но синдром Криглера-Наджара может быть летальным. Функционально наследственные гепатозы проявляются в основном хронической или интермитирующей желтухой с незначительным непостоянным нарушением функций печени, у значительной части больных имеется морфологическая картина легкого гепатоза.

Похожие статьи