Структура и строение клетки. Клеточное строение организма

16.06.2019

Цитология - наука о клетке. Наука о клетке называется цитологией (греч. "цитос"-клетка, "логос"-наука). Предмет цитологии - клетки многоклеточных животных и растений, а также одноклеточных организмов, к числу которых относятся бактерии, простейшие и одноклеточные водоросли. Цитология изучает строение и химический состав клеток, функции внутриклеточных структур, функции клеток в организме животных и растений, размножение и развитие клеток, приспособления клеток к условиям окружающей среды. Современная цитология - наука комплексная. Она имеет самые тесные связи с другими биологическими науками, например с ботаникой, зоологией, физиологией, учением об эволюции органического мира, а также с молекулярной биологией, химией, физикой, математикой. Цитология - одна из относительно молодых биологических наук, ее возраст около 100 лет. Возраст же термина "клетка" насчитывает свыше 300 лет. Впервые название "клетка" в середине XVII в. применил Р.Гук. Рассматривая тонкий срез пробки с помощью микроскопа, Гук увидел, что пробка состоит из ячеек - клеток.

Клетка – элементарная единица всего живого, поэтому ей присущи свойства живых организмов: высокоупорядоченное строение, обмен веществ, раздражимость, рост, развитие, размножение, регенерация и другие свойства.

Снаружи клетка покрыта клеточной мембраной, отделяющей клетку от внешней среды. Она выполняет следующие функции: защитную, разграничительную, рецепторную (восприятие сигналов внешней среды), транспортную.

Цитоплазма образует ряд специфических структур. Это межклеточные соединения, микроворсинки, реснички, клеточные отростки. Межклеточные соединения (контакты) подразделяются на простые и сложные. При простом соединении цитоплазмы соседних клеток формируют выросты, которые соединяют клетки. Между цитоплазмами всегда сохраняется межклеточная щель. При сложных соединениях клетки соединяются с помощью волокон, а расстояния между клетками почти нет. Микроворсинки – это лишенные органоидов пальцевидные выросты клетки. Реснички и жгутики выполняют функцию движения.

Митохондрии содержат вещества, богатые энергией, участвуют в процессах клеточного дыхания и преобразования энергии в форму, доступную для использования клеткой. Количество, размеры и расположение митохондрий зависит от функции клетки, ее потребности в энергии. Митохондрии содержат собственную ДНК. Около 2% ДНК клетки содержится в митохондриях. В рибосомах образуются клеточные белки. Рибосомы участвуют в синтезе белка, присутствуют во всех клетках человека, за исключением зрелых эритроцитов. Рибосомы могут свободно располагаться в цитоплазме. Они синтезируют белок, необходимый для жизнедеятельности самой клетки. Синтез белка связан с процессом транскрипции – переписывания информации, хранящейся в ДНК.

Ядро – важнейший органоид клетки: в нем содержится особое вещество хроматин, из которого перед делением клетки образуются нитевидные хромосомы – носители наследственных признаков и свойств человека. В состав хроматина входят ДНК и небольшое количество РНК. В делящемся ядре хроматин спирализуется, в результате чего становятся видимыми хромосомы. Ядрышко (одно или несколько) – плотное округлое тельце, размеры которого тем больше, чем интенсивнее протекает белковый синтез. В ядрышке образуются рибосомы.

Клетка любого организма представляет собой целостную живую систему. Она состоит из трех неразрывно связанных между собой частей: оболочки, цитоплазмы и ядра. Оболочка клетка осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками (в многоклеточных организмах).

Биофизические процессы в клетках обеспечивают реализацию механизмов нервной регуляции, регуляцию физико-химических показателей внутренней среды (осмотическое давление, рН), создание электрических зарядов клеток, возникновение и распространение возбуждения, выделение секретов (гормонов, ферментов и других биологически активных веществ), реализацию действия фармакологических препаратов. Данные процессы возможны благодаря функционированию транспортной системы . С переносом веществ через мембраны также связаны процессы метаболизма клетки, в том числе биоэнергетические и многие другие. Фармакологическое действие практически любого лекарственного препарата также обусловлено его проникновением через клеточные мембраны, а эффективность в значительной степени зависит от ее проницаемости.

Функции клеток

Тело человека имеет клеточное строение. Клетки находятся в межклеточном веществе, которое обеспечивает им механическую прочность, питание и дыхание. Клетки разнообразны по размерам, форме, функциям. Изучением строения и функций клеток занимается цитология (греч. "цитос" - клетка).

Клетка покрыта мембраной, состоящей из нескольких слоев молекул, обеспечивающей избирательную проницаемость веществ. Пространство между мембранами соседних клеток заполнено жидким межклеточным веществом. Главная функция мембраны: осуществляется обмен веществ между клеткой и межклеточным веществом.

Цитоплазма - вязкое полужидкое вещество. Цитоплазма содержит ряд мельчайших структур клетки - органоидов, которые выполняют различные функции: эндоплазматическая сеть, рибосомы, митохондрии, лизосомы, комплекс Гольджи, клеточный центр, ядро.

Эндоплазматическая сеть - система канальцев и полостей, пронизывающая всю цитоплазму. Основная функция - участие в синтезе, накопление и передвижение основных органических веществ, вырабатываемых клеткой, синтез белка.

Рибосомы - плотные тельца, содержащие белок и рибо-нуклеиновую - (РНК) кислоту. Они являются местом синтеза белка. Комплекс Гольджиограниченные мембранами полости с отходящими от них трубочками и расположенными на их концах пузырьками. Основная функция - накопление органических веществ, образование лизосом.

Клеточный центр образован двумя тельцами, которые участвуют в делении клетки. Эти тельца расположены возле ядра.

Ядро - важнейшая структура клетки. Полость ядра заполнена ядерным соком. В нем находятся ядрышко, нуклеиновые кислоты, белки, жиры, углеводы, хромосомы. В хромосомах заключена наследственная информация. Для клеток характерно постоянное количество хромосом. В клетках тела человека содержится по 46 хромосом, а в половых клетках - по 23.

Лизосомы - округлые тельца с комплексом ферментов внутри. Их основная функция - переваривание пищевых частиц и удаление отмерших органоидов.

В состав клеток входят неорганические и органические соединения.

Неорганические вещества - вода и соли. Вода составляет до 80% массы клетки. Она растворяет вещества, участвующие в химических реакциях: переносит питательные вещества, выводит из клетки отработанные и вредные соединения.

Минеральные соли - хлорид натрия, хлорид калия и др., играют важную роль в распределении воды между клетками и межклеточным веществом. Отдельные химические элементы: кислород, водород, азот, сера, железо, магний, цинк, йод, фосфор участвуют в создании жизненно важных органических соединений.

Органические соединения образуют до 20-30% массы каждой клетки. Среди них наибольшее значение имеют белки, жиры, углеводы и нуклеиновые кислоты.

Белки - основные и самые сложные из встречающихся в природе органических веществ. Молекула белка имеет большие размеры, состоит из аминокислот. Белки служат строительным материалом клетки. Они участвуют в формировании мембран клетки, ядра, цитоплазмы, органоидов. Белки-ферменты являются ускорителями течения химических реакций. Только в одной клетке насчитывается до 1000 разных белков. Состоят из углерода, водорода, азота, кислорода, серы, фосфора.

Углеводы - состоят из углерода, водорода, кислорода. К углеводам относятся глюкоза, животный крахмал гликоген. При распаде 1 г освобождается 17,2 кДж энергии.

Жиры образованы теми же химическими элементами, что и углеводы. Жиры нерастворимы в воде. Входят они в состав клеточных мембран, служат запасным источником энергии в организме. При расщеплении 1 г жира освобождается 39,1 кДж энергии.

Нуклеиновые кислоты бывают двух типов - ДНК и РНК.

ДНК находится в ядре, входит в состав хромосом, определяет состав белков клетки и передачу наследственных признаков и свойств от родителей к потомству. Функции РНК связаны с образованием характерных для этой клетки белков.

Основное жизненное свойство клетки - обмен веществ. Из межклеточного вещества в клетки постоянно поступают питательные вещества и кислород и выделяются продукты распада.

Вещества, поступившие в клетку, участвуют в процессах биосинтеза.

Биосинтез - это образование белков, жиров, углеводов и их соединений из более простых веществ. Одновременно с биосинтезом в клетках происходит распад органических соединений. Большинство реакций распада идет с участием кислорода и освобождением энергии. В результате обмена веществ состав клеток постоянно обновляется: одни вещества образуются, а другие разрушаются.

Свойство живых клеток, тканей, целого организма реагировать на внешние или внутренние воздействия - раздражители называется раздражимостью. В ответ на химические и физические раздражения в клетках возникают специфические изменения их жизнедеятельности.

Клеткам свойственны рост и размножение. Каждая из образовавшихся дочерних клеток растет и достигает размеров материнской. Новые клетки выполняют функцию материнской клетки. Продолжительность жизни клеток различна: от нескольких часов до десятков лет.

Живая клетка обладает рядом жизненных свойств: обменом веществ, раздражимостью, ростом и размножением, подвижностью, на основе которых осуществляются функции целого организма.

Оболочка клеток.

Оболочка клеток имеет сложное строение. Она состоит из наружного слоя и расположенной под ним плазматической мембраны. Клетки животных и растений различаются по строению их наружного слоя. У растений, а также у бактерий, сине-зеленых водорослей и грибов на поверхности клеток расположена плотная оболочка, или клеточная стенка. У большинства растений она состоит из клетчатки. Клеточная стенка играет исключительно важную роль: она представляет собой внешний каркас, защитную оболочку, обеспечивает тургор растительных клеток: через клеточную стенку проходит вода, соли, молекулы многих органических веществ.

Наружный слой поверхности клеток животных в отличие от клеточных стенок растений очень тонкий, эластичный. Он не виден в световой микроскоп и состоит из разнообразных полисахаридов и белков. Поверхностный слой животных клеток получил название гликокаликс.

Гликокаликс выполняет прежде всего функцию непосредственной связи клеток животных с внешней средой, со всеми окружающими ее веществами. Имея незначительную толщину (меньше 1 мкм), наружный слой клетки животных не выполняет опорной роли, какая свойственна клеточным стенкам растений. Образование гликокаликса, так же как и клеточных стенок растений, происходит благодаря жизнедеятельности самих клеток.

Плазматическая мембрана.

Под гликокаликсом и клеточной стенкой растений расположена плазматическая мембрана (лат. "мембрана"-кожица, пленка), граничащая непосредственно с цитоплазмой. Толщина плазматической мембраны около 10 нм, изучение ее строения и функций возможно только с помощью электронного микроскопа.

В состав плазматической мембраны входят белки и липиды. Они упорядочено расположены и соединены друг с другом химическими взаимодействиями. По современным представлениям молекулы липидов в плазматической мембране расположены в два ряда и образуют сплошной слой. Молекулы белков не образуют сплошного слоя, они располагаются в слое липидов, погружаясь в него на разную глубину.

Молекулы белка и липидов подвижны, что обеспечивает динамичность плазматической мембраны.

Плазматическая мембрана выполняет много важных функций, от которых завидят жизнедеятельность клеток. Одна из таких функций заключается в том, что она образует барьер, отграничивающий внутреннее содержимое клетки от внешней среды. Но между клетками и внешней средой постоянно происходит обмен веществ. Из внешней среды в клетку поступает вода, разнообразные соли в форме отдельных ионов, неорганические и органические молекулы. Они проникают в клетку через очень тонкие каналы плазматической мембраны. Во внешнюю среду выводятся продукты, образованные в клетке. Транспорт веществодна из главных функций плазматической мембраны. Через плазматическую мембрану из клети выводятся продукты обмена, а также вещества, синтезированные в клетке. К числу их относятся разнообразные белки, углеводы, гормоны, которые вырабатываются в клетках различных желез и выводятся во внеклеточную среду в форме мелких капель.

Клетки, образующие у многоклеточных животных разнообразные ткани (эпителиальную, мышечную и др.), соединяются друг с другом плазматической мембраной. В местах соединения двух клеток мембрана каждой из них может образовывать складки или выросты, которые придают соединениям особую прочность.

Соединение клеток растений обеспечивается путем образования тонких каналов, которые заполнены цитоплазмой и ограничены плазматической мембраной. По таким каналам, проходящим через клеточные оболочки, из одной клетки в другую поступают питательные вещества, ионы, углеводы и другие соединения.

На поверхности многих клеток животных, например различных эпителиев, находятся очень мелкие тонкие выросты цитоплазмы, покрытые плазматической мембраной, - микроворсинки. Наибольшее количество микроворсинок находится на поверхности клеток кишечника, где происходит интенсивное переваривание и всасывание переваренной пищи.

Фагоцитоз.

Крупные молекулы органических веществ, например белков и полисахаридов, частицы пищи, бактерии поступают в клетку путем фагоцита (греч. "фагео" - пожирать). В фагоците непосредственное участие принимает плазматическая мембрана. В том месте, где поверхность клетки соприкасается с частицей какого-либо плотного вещества, мембрана прогибается, образует углубление и окружает частицу, которая в "мембранной упаковке" погружается внутрь клетки. Образуется пищеварительная вакуоль и в ней перевариваются поступившие в клетку органические вещества.

Цитоплазма.

Отграниченная от внешней среды плазматической мембраной, цитоплазма представляет собой внутреннюю полужидкую среду клеток. В цитоплазму эукариотических клеток располагаются ядро и различные органоиды. Ядро располагается в центральной части цитоплазмы. В ней сосредоточены и разнообразные включения - продукты клеточной деятельности, вакуоли, а также мельчайшие трубочки и нити, образующие скелет клетки. В составе основного вещества цитоплазмы преобладают белки. В цитоплазме протекают основные процессы обмена веществ, она объединяет в одно целое ядро и все органоиды, обеспечивает их взаимодействие, деятельность клетки как единой целостной живой системы.

Эндоплазматическая сеть.

Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети.

Эндоплазматическая сеть неоднородна по своему строению. Известны два ее типа - гранулярная и гладкая. На мембранах каналов и полостей гранулярной сети располагается множество мелких округлых телец - рибосом, которые придают мембранам шероховатый вид. Мембраны гладкой эндоплазматической сети не несут рибосом на своей поверхности.

Эндоплазматическая сеть выполняет много разнообразных функций. Основная функция гранулярной эндоплазматической сети - участие в синтезе белка, который осуществляется в рибосомах.

На мембранах гладкой эндоплазматической сети происходит синтез липидов и углеводов. Все эти продукты синтеза накапливаются н каналах и полостях, а затем транспортируются к различным органоидам клетки, где потребляются или накапливаются в цитоплазме в качестве клеточных включений. Эндоплазматическая сеть связывает между собой основные органоиды клетки.

Рибосомы.

Рибосомы обнаружены в клетках всех организмов. Это микроскопические тельца округлой формы диаметром 15-20 нм. Каждая рибосома состоит из двух неодинаковых по размерам частиц, малой и большой.

В одной клетке содержится много тысяч рибосом, они располагаются либо на мембранах гранулярной эндоплазматической сети, либо свободно лежат в цитоплазме. В состав рибосом входят белки и РНК. Функция рибосом - это синтез белка. Синтез белка - сложный процесс, который осуществляется не одной рибосомой, а целой группой, включающей до нескольких десятков объединенных рибосом. Такую группу рибосом называют полисомой. Синтезированные белки сначала накапливаются в каналах и полостях эндоплазматической сети, а затем транспортируются к органоидам и участкам клетки, где они потребляютя. Эндоплазматическая сеть и рибосомы, расположенные на ее мембранах, представляют собой единый аппарат биосинтеза и транспортировки белков.

Митохондрии.

В цитоплазме большинства клеток животных и растений содержатся мелкие тельца (0,2-7 мкм) - митохондрии (греч. "митос" - нить, "хондрион" - зерно, гранула).

Митохондрии хорошо видны в световой микроскоп, с помощью которого можно рассмотреть их форму, расположение, сосчитать количество. Внутреннее строение митохондрий изучено с помощью электронного микроскопа. Оболочка митохондрии состоит из двух мембран - наружной и внутренней. Наружная мембрана гладкая, она не образует никаких складок и выростов. Внутренняя мембрана, напротив, образует многочисленные складки, которые направлены в полость митохондрии. Складки внутренней мембраны называют кристами (лат. "криста" - гребень, вырост) Число крист неодинаково в митохондриях разных клеток. Их может быть от нескольких десятков до нескольких сотен, причем особенно много крист в митохондриях активно функционирующих клеток, например мышечных.

Митохондрии называют "силовыми станциями" клеток" так как их основная функция - синтез аденозинтрифосфорной кислоты (АТФ). Эта кислота синтезируется в митохондриях клеток всех организмов и представляет собой универсальный источник энергии, необходимый для осуществления процессов жизнедеятельности клетки и целого организма.

Новые митохондрии образуются делением уже существующих в клетке митохондрий.

Пластиды.

В цитоплазме клеток всех растений находятся пластиды. В клетках животных пластиды отсутствуют. Различают три основных типа пластид: зеленые - хлоропласты; красные, оранжевые и желтые - хромопласты; бесцветные - лейкопласты.

Хлоропласт.

Эти органоиды содержатся в клетках листьев и других зеленых органов растений, а также у разнообразных водорослей. Размеры хлоропластов 4-6 мкм, наиболее часто они имеют овальную форму. У высших растений в одной клетке обычно бывает несколько десятков хлоропластов. Зеленый цвет хлоропластов зависит от содержания в них пигмента хлорофилла. Xлоропласт - основной органоид клеток растений, в котором происходит фотосинтез, т. е. образование органических веществ (углеводов) из неорганических (СО2 и Н2О) при использовании энергии солнечного света.

По строению хлоропласты сходны с митохондриями. От цитоплазмы хлоропласт отграничен двумя мембранами - наружной и внутренней. Наружная мембрана гладкая, без складок и выростов, а внутренняя образует много складчатых выростов, направленных внутрь хлоропласта. Поэтому внутри хлоропласта сосредоточено большое количество мембран, образующих особые структуры - граны. Они сложены наподобие стопки монет.

В мембранах гран располагаются молекулы хлорофилла, потому именно здесь происходит фотосинтез. В хлоропластах синтезируется и АТФ. Между внутренними мембранами хлоропласта содержатся ДНК, РНК. и рибосомы. Следовательно, в хлоропластах, так же как и в митохондриях, происходит синтез белка, необходимого для деятельности этих органоидов. Хлоропласты размножаются делением.

Хромопласты находятся в цитоплазме клеток разных частей растений: в цветках, плодах, стеблях, листьях. Присутствием хромопластов объясняется желтая, оранжевая и красная окраска венчиков цветков, плодов, осенних листьев.

Лейкопласты.

Они находятся в цитоплазме клеток неокрашенных частей растений, например в стеблях, корнях, клубнях. Форма лейкопластов разнообразна.

Хлоропласты, хромопласты и лейкопласты способны клетка взаимному переходу. Так при созревании плодов или изменении окраски листьев осенью хлоропласты превращаются в хромопласты, а лейкопласты могут превращаться в хлоропласты, например, при позеленении клубней картофеля.

Аппарат Гольджи.

Во многих клетках животных, например в нервных, он имеет форму сложной сети, расположенной вокруг ядра. В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. Строение этого органоида сходно в клетках растительных и животных организмов, несмотря на разнообразие его формы.

В состав аппарата Гольджи входят: полости, ограниченные мембранами и расположенные группами (по 5-10); крупные и мелкие пузырьки, расположенные на концах полостей. Все эти элементы составляют единый комплекс.

Аппарат Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки - белки, углеводы и жиры. Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме. Например, в клетках поджелудочной железы млекопитающих синтезируются пищеварительные ферменты, которые накапливаются в полостях органоида. Затем образуются пузырьки, наполненные ферментами. Они выводятся из клеток в проток поджелудочной железы, откуда перетекают в полость кишечника. Еще одна важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран. Благодаря деятельности аппарата Гольджи происходят обновление и рост плазматической мембраны.

Лизосомы.

Представляют собой небольшие округлые тельца. От Цитоплазмы каждая лизосома отграничена мембраной. Внутри лизосомы находятся ферменты, расщепляющие белки, жиры, углеводы, нуклеиновые кислоты.

К пищевой частице, поступившей в цитоплазму, подходят лизосомы, сливаются с ней, и образуется одна пищеварительная вакуоль, внутри которой находится пищевая частица, окруженная ферментами лизосом. Вещества, образовавшиеся в результате переваривания пищевой частицы, поступают в цитоплазму и используются клеткой.

Обладая способностью к активному перевариванию пищевых веществ, лизосомы участвуют в удалении отмирающих в процессе жизнедеятельности частей клеток, целых клеток и органов. Образование новых лизосом происходит в клетке постоянно. Ферменты, содержащиеся в лизосомах, как и всякие другие белки синтезируются на рибосомах цитоплазмы. Затем эти ферменты поступают по каналам эндоплазматической сети к аппарату Гольджи, в полостях которого формируются лизосомы. В таком виде лизосомы поступают в цитоплазму.

Клеточный центр.

В клетках животных вблизи ядра находится органоид, который называют клеточным центром. Основную часть клеточного центра составляют два маленьких тельца - центриоли, расположенные в небольшом участке уплотненной цитоплазмы. Каждая центриоль имеет форму цилиндра длиной до 1 мкм. Центриоли играют важную роль при делении клетки; они участвуют в образовании веретена деления.

Клеточные включения.

К клеточным включениям относятся углеводы, жиры и белки. Все эти вещества накапливаются в цитоплазме клетки в виде капель и зерен различной величины и формы. Они периодически синтезируются в клетке и используются в процессе обмена веществ.

Ядро.

Каждая клетка одноклеточных и многоклеточных животных, а также растений содержит ядро. Форма и размеры ядра зависят от формы и размера клеток. В большинстве клеток имеется одно ядро, и такие клетки называют одноядерными. Существуют также клетки с двумя, тремя, с несколькими десятками и даже сотнями ядер. Это - многоядерные клетки.

Ядерный сок - полужидкое вещество , которое находится под ядерной оболочкой и представляет внутреннюю среду ядра.

Все живые существа и организмы на состоят из клеток: растения, грибы, бактерии, животные, люди. Несмотря на минимальный размер, все функции целого организма выполняет клетка. Внутри нее протекают сложные процессы, от которых зависит жизнеспособность тела и работа его органов.

Вконтакте

Структурные особенности

Учёные занимаются изучением особенности строения клетки и принципов ее работы. Детально рассмотреть особенности структуры клетки можно только при помощи мощного микроскопа.

Все наши ткани — кожные покровы, кости, внутренние органы состоят из клеток, которые являются строительным материалом , бывают разных форм и размеров, каждая разновидность выполняет определённую функцию, но основные особенности их строения сходны.

Сначала выясним, что лежит в основе структурной организации клеток . В ходе проведенных исследований ученые установили, что клеточным фундаментом является мембранный принцип. Получается, что все клетки образованы из мембран, которые состоят из двойного слоя фосфолипидов, куда с наружной и внутренней стороны погружены молекулы белков.

Какое свойство характерно для всех типов клеток: одинаковое строение, а также функционал — регулирование процесса обмена веществ, использование собственного генетического материала (наличие и РНК ), получение и расход энергии.

В основе структурной организации клетки выделяются следующие элементы, выполняющие определенную функцию:

  • мембрана — клеточная оболочка, состоит из жиров и протеинов. Ее основная задача – отделять вещества, находящиеся внутри, от внешней среды. Структуру имеет полупроницаемую: способна пропускать и оксид углерода;
  • ядро – центральная область и главный компонент, отделяется от других элементов мембраной. Именно внутри ядра находится информация о росте и развитии, генетический материал, представленный в виде молекул ДНК, входящих в состав ;
  • цитоплазма — это жидкая субстанция, образующая внутреннюю среду, где происходят разнообразные жизненно важные процессы, содержит в себе очень много важных компонентов.

Из чего состоит клеточное содержимое, каковы функции цитоплазмы и ее основных компонентов:

  1. Рибосома — важнейший органоид, который необходим для процессов биосинтеза белков из аминокислот, белки выполняют огромное количество жизненно важных задач.
  2. Митохондрии – ещё один компонент, находящийся внутри цитоплазмы. Его можно описать одним словосочетанием – энергетический источник. Их функция заключается в обеспечении компонентов питанием для дальнейшего производства энергии.
  3. Аппарат Гольджи состоит из 5 – 8 мешочков, которые соединены между собой. Основная задача этого аппарата – передача протеинов в другие части клетки для обеспечения энергетического потенциала.
  4. Очистку от повреждённых элементов производят лизосомы .
  5. Транспортировкой занимается эндоплазматическая сеть, по которой белки перемещают молекулы полезных веществ.
  6. Центриоли отвечают за воспроизводство.

Ядро

Поскольку — клеточный центр, поэтому следует уделить его строению и функциям особое внимание. Данный компонент является важнейшим элементом для всех клеток: содержит наследственные признаки. Без ядра стали бы невозможными процессы размножения и передачи генетической информации . Посмотрите на рисунок, изображающий строение ядра.

  • Ядерная оболочка, которая выделена сиреневым цветом, пропускает внутрь нужные веществам и выпускает обратно через поры — маленькие отверстия.
  • Плазма представляет собой вязкую субстанцию, в ней находятся все остальные ядерные компоненты.
  • ядро размещается в самом центре, имеет форму сферы. Его главная функция – образование новых рибосом.
  • Если рассмотреть центральную часть клетки в разрезе, то можно увидеть малозаметные синие переплетения — хроматин, главное вещество, который состоит из комплекса белков и длинных нитей ДНК, несущих в себе необходимую информацию.

Клеточная мембрана

Давайте подробнее рассмотрим работу, строение и функции этого компонента. Ниже представлена таблица, наглядно показывающая важность внешней оболочки.

Хлоропласты

Это ещё один наиважнейший компонент. Но почему о хлоропластах не было упомянуто раньше, спросите вы. Да потому, что этот компонент содержится только в клетках растений. Главное различие между животными и растениями заключается в способе питания: у животных оно гетеротрофное, а у растений автотрофное. Это означает, что животные не способны создавать, то есть синтезировать органические вещества из неорганических – они питаются готовыми органическими веществами. Растения же, напротив, способны осуществлять процесс фотосинтеза и содержат особые компоненты — хлоропласты. Это пластиды зеленого оттенка, содержащие вещество хлорофилл. С его участием энергия света преобразуется в энергию химических связей органических веществ.

Интересно! Хлоропласты в большом объеме сосредоточены главным образом в надземной части растений — зелёных плодах и листьях.

Если вам зададут вопрос: назовите важную особенность строения органических соединений клетки, то ответ можно дать следующий.

  • многие из них содержат атомы углерода, которые обладают различными химическими и физическими свойствами, а также способны соединяться друг с другом;
  • являются носителями, активными участниками разнообразных процессов, протекающих в организмах, либо являются их продуктами. Имеются ввиду гормоны, разные ферменты, витамины;
  • могут образовывать цепи и кольца, что обеспечивает многообразие соединений;
  • разрушаются при нагревании и взаимодействии с кислородом;
  • атомы в составе молекул объединяются друг с другом с помощью ковалентных связей, не разлагаются на ионы и потому медленно взаимодействуют, реакции между веществами протекают очень долго — по нескольку часов и даже дней.

Строение хлоропласт

Ткани

Клетки могут существовать по одной, как в одноклеточных организмах, но чаще всего они объединяются в группы себе подобных и образуют различные тканевые структуры, из которых и состоит организм. В теле человека существует несколько видов тканей:

  • эпителиальная – сосредоточена на поверхности кожных покровов, органов, элементов пищеварительного тракта и дыхательной системы;
  • мышечная — мы двигаемся благодаря сокращению мышц нашего тела, осуществляем разнообразные движения: от простейшего шевеления мизинцем, до скоростного бега. Кстати, биение сердца тоже происходит за счёт сокращения мышечной ткани;
  • соединительная ткань составляет до 80 процентов массы всех органов и играет защитную и опорную роль;
  • нервная — образует нервные волокна. Благодаря ей по организму проходят различные импульсы.

Процесс воспроизводства

На протяжении всей жизни организма происходит митоз – так называют процесс деления, состоящий из четырёх стадий:

  1. Профаза . Две центриоли клетки делятся и направляются в противоположные стороны. Одновременно с этим хромосомы образуют пары, а оболочка ядра начинает разрушаться.
  2. Вторая стадия получила название метафазы . Хромосомы располагаются между центриолями, постепенно внешняя оболочка ядра полностью исчезает.
  3. Анафаза является третьей стадией, на протяжении которой продолжается движение центриолей в противоположном друг от друга направлении, а отдельные хромосомы также следуют за центриолями и отодвигаются друг от друга. Начинает сжиматься цитоплазма и вся клетка.
  4. Телофаза – окончательная стадия. Цитоплазма сжимается до тех пор, пока не появятся две одинаковые новые клетки. Формируется новая мембрана вокруг хромосом и появляется одна пара центриолей у каждой новой клетки.

Интересно! Клетки у эпителия делятся быстрее, чем у костной ткани. Все зависит от плотности тканей и других характеристик. Средняя продолжительность жизни основных структурных единиц составляет 10 дней.

Строение клетки. Строение и функции клетки. Жизнь клетки.

Вывод

Вы узнали каково строение клетки — самой важной составляющей организма. Миллиарды клеток составляют удивительно мудро организованную систему, которая обеспечивает работоспособность и жизнедеятельность всех представителей животного и растительного мира.

У многоклеточного организма содержимое клетки отделено от внешней среды и соседних клеток плазматической мембраной, или плазмалеммой. Все содержимое клетки, за исключением ядра, носит название цитоплазмы. Она включает вязкую жидкость - цитозоль (или гиалоплазму), мембранные и немембранные компоненты. К мембранным компонентам клетки относятся ядро, митохондрии, пластиды, эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли растительных клеток. К немембранным компонентам относятся хромосомы, рибосомы, клеточный центр и центриоли, органоиды передвижения (реснички и жгутики). Клеточная мембрана (плазмалемма) состоит из липидов и белков. Липиды в мембране образуют двойной слой (кислой), а белки пронизывают всю ее толщу или располагаются на внешней или внутренней поверхности мембраны. К некоторым белкам, находящимся на наружной поверхности, прикреплены углеводы. Белки и углеводы на поверхности мембран у разных клеток неодинаковы и являются своеобразными указателями типа клеток. Благодаря этому клетки, принадлежащие к одному типу, удерживаются вместе, образуя ткани. Кроме того, белковые молекулы обеспечивают избирательный транспорт сахаров, аминокислот, нуклеотидов и других веществ в клетку и из клетки. Таким образом, клеточная мембрана выполняет функции избирательно проницаемого барьера, регулирующего обмен между клеткой и средой.

Ядро - самый крупный органоид клетки, заключенный в оболочку из двух мембран, насквозь пронизанных многочисленными порами. Через них осуществляется активный обмен веществами между ядром и цитоплазмой. Полость ядра заполнена ядерным соком.

В нем находятся ядрышко (одно или несколько), хромосомы, ДНК, РНК, белки, углеводы, липиды. Ядрышко формируется определенными участками хромосом; в нем образуются рибосомы. Хромосомы видны только в делящихся клетках. В интерфазном (неделящемся) ядре они присутствуют в виде тонких длинных нитей хроматина (соединения ДНК с белком). Ядро, благодаря наличию в нем хромосом, содержащих наследственную информацию, выполняет функции центра, управляющего всей жизнедеятельностью и развитием клетки.



Эндоплазматическая сеть (ЭПС) - это состоящая из мембран сложная система каналов и полостей, пронизывающая всю цитоплазму и образующая единое целое с наружной клеточной мембраной и ядерной оболочкой. ЭПС бывает двух типов - гранулированная (шероховатая) и гладкая. На мембранах гранулированной сети располагается множество рибосом, на мембранах гладкой сети их нет. Основная функция ЭПС - участие синтезе, накоплении и транспортировке основных органических веществ, вырабатываемых клеткой. Белок синтезируется гранулированной, а углеводы и жиры - гладкой ЭПС.

Рибосомы - очень мелкие органоиды, состоящие из двух субчастиц. В их состав входят белки и РНК. Основная функция рибосом - синтез белка.

Митохондрии снаружи ограничены внешней мембраной, имеющей в основном то же строение, что и плазматическая мембрана. Под наружной мембраной располагается внутренняя мембрана, образующая многочисленные складки - кристы. На кристах находятся дыхательные ферменты. Во внутренней полости митохондрий размещаются рибосомы, ДНК, РНК. Новые митохондрии образуются при делении старых. Основная функция митохондрий - синтез АТФ. В них синтезируется небольшое количество белков ДНК и РНК.

Хлоропласты - это органоиды, свойственные только клеткам растений. По своему строению они сходны с митохондриями. С поверхности каждый хлоропласт ограничен двумя мембранами - наружной и внутренней. Внутри хлоропласт заполнен студенистой стромой. В строме располагаются особые мембранные оболочка (две мембраны) - граны, связанные между собой и с внут-мемопаной хлоропласта. В мембранах гран на-орофилл. Благодаря хлорофиллу происходит превращение энергий солнечного света в химическую энергию АТФ. Энергия АТФ используется в хлоропластах для синтеза углеводов.

Аппарат Гольджи состоит из 3 - 8 сложенных стопкой, уплощенных и слегка изогнутых дискообразных полостей. Он выполняет в клетке разнообразные функции: участвует в транспорте продуктов биосинтеза к поверхности клетки и в выведении их из клетки, в формировании лизосом, в построении клеточной мембраны.

Лизосомы представляют собой простые сферические мембранные мешочки (мембрана одинарная), заполненные пищеварительными ферментами, расщепляющими углеводы, жиры, белки, нуклеиновые кислоты. Их основная функция - переваривание пищевых частиц и удаление отмерших органоидов.

Клеточный центр принимает участие в делении клетки и располагается около ядра. В состав клеточного центра клеток животных и низших растений входит центриоль. Центриоль - парное образование, она содержит две удлиненные гранулы, состоящие из микротрубочек и расположенные перпендикулярно друг другу центриоли

Органоиды движения - жгутики и реснички - представляют собой выросты клетки и имеют однотипное строение у животных и растений. Движение многоклеточных животных обеспечивается сокращениями мышц. Основной структурной единицей мышечной клетки являются миофибриоллы - тонкие нити, расположенные пучками вдоль мышечного волокна.

Крупная центральная вакуоль встречается в клетках растений и представляет собой мешок, образованный одинарной мембраной. (Более мелкие вакуоли, например, пищеварительные и сократительные, встречаются как в растительных, так и в животных клетках.) В вакуоли содержится клеточный сок - концентрированный раствор различных веществ (минеральных солей, Сахаров, кислот, пигментов, ферментов), которые здесь хранятся.

Клеточные включения - углеводы, жиры и белки - это непостоянные компоненты клетки. Они периодически синтезируются, накапливаются в цитоплазме в качестве запасных веществ и используются в процессе жизнедеятельности организма.

Приглашаем Вас ознакомиться с материалами и .

: целлюлозная оболочка, мембрана, цитоплазма с органоидами, ядро, вакуоли с клеточным соком.

Наличие пластид - главная особенность растительной клетки.


Функции клеточной оболочки - определяет форму клетки, защищает от факторов внешней среды.

Плазматическая мембрана - тонкая пленка, состоит из взаимодействующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органических веществ путем осмоса и активного переноса, а также удаляет продукты жизнедеятельности.

Цитоплазма - внутренняя полужидкая среда клетки, в которой расположено ядро и органоиды, обеспечивает связи между ними, участвует в основных процессах жизнедеятельности.

Эндоплазматическая сеть - сеть ветвящихся каналов в цитоплазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ. Рибосомы - тельца, расположенные на ЭПС или в цитоплазме, состоят из РНК и белка, участвуют в синтезе белка. ЭПС и рибосомы - единый аппарат синтеза и транспорта белков.

Митохондрии - органоиды, отграниченные от цитоплазмы двумя мембранами. В них окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. Увеличение поверхности внутренней мембраны, на которой расположены ферменты за счет крист. АТФ - богатое энергией органическое вещество.

Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в клетке - главная особенность растительного организма. Хлоропласты - пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию света и использует ее на синтез органических веществ из углекислого газа и воды. Отграничение хлоропластов от цитоплазмы двумя мембранами, многочисленные выросты - граны на внутренней мембране, в которых расположены молекулы хлорофилла и ферменты.

Комплекс Гольджи - система полостей, отграниченных от цитоплазмы мембраной. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов.

Лизосомы - тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки.

Вакуоли - полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке.

Ядро - главная часть клетки, покрытая снаружи двух мембранной, пронизанной порами ядерной оболочкой. Вещества поступают в ядро и удаляются из него через поры. Хромосомы - носители наследственной информации о признаках организма, основные структуры ядра, каждая из которых состоит из одной молекулы ДНК в соединении с белками. Ядро - место синтеза ДНК, и-РНК, р-РНК.



Наличие наружной мембраны, цитоплазмы с органоидами, ядра с хромосомами.

Наружная, или плазматическая, мембрана - отграничивает содержимое клетки от окружающей среды (других клеток, межклеточного вещества), состоит из молекул липидов и белка, обеспечивает связь между клетками, транспорт веществ в клетку (пиноцитоз, фагоцитоз) и из клетки.

Цитоплазма - внутренняя полужидкая среда клетки, которая обеспечивает связь между расположенными в ней ядром и органоидами. В цитоплазме протекают основные процессы жизнедеятельности.

Органоиды клетки:

1) эндоплазматическая сеть (ЭПС) - система ветвящихся канальцев, участвует в синтезе белков, липидов и углеводов, в транспорте веществ в клетке;

2) рибосомы - тельца, содержащие рРНК, расположены на ЭПС и в цитоплазме, участвуют в синтезе белка. ЭПС и рибосомы - единый аппарат синтеза и транспорта белка;

3) митохондрии - «силовые станции» клетки, отграничены от цитоплазмы двумя мембранами. Внутренняя образует кристы (складки), увеличивающие ее поверхность. Ферменты на кристах ускоряют реакции окисления органических веществ и синтеза молекул АТФ, богатых энергией;

4) комплекс Гольджи - группа полостей, отграниченных мембраной от цитоплазмы, заполненных белками, жирами и углеводами, которые либо используются в процессах жизнедеятельности, либо удаляются из клетки. На мембранах комплекса осуществляется синтез жиров и углеводов;

5) лизосомы - тельца, заполненные ферментами, ускоряют реакции расщепления белков до аминокислот, липидов до глицерина и жирных -.кислот, полисахаридов до моносахаридов. В лизосомах разрушаются отмершие части клетки, целые и клетки.

Клеточные включения - скопления запасных питательных веществ: белков, жиров и углеводов.

Ядро - наиболее важная часть клетки. Оно покрыто двухмембранной оболочкой с порами, через которые одни вещества проникают в ядро, а Другие поступают в цитоплазму. Хромосомы - основные структуры ядра, носители наследственной информации о признаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с половыми клетками - дочерним организмам. Ядро - место синтеза ДНК, иРНК, рРНК.

Задание:

Поясните, почему органоиды называют специализированными структурами клетки?

Ответ: органоиды называют специализированными структурами клетки, так как они выполняют строго определенные функции, в ядре хранится наследственная информация, в митохондриях синтезируется АТФ, в хлоропластах протекает фотосинтез и т.д.

Если у Вас есть вопросы по цитологии, то Вы можете обратиться за помощью к

Химический состав живых организмов

Химический состав живых организмов можно выразить в двух видах: атомный и молекулярный. Атомный (элементный) состав показывает соотношение атомов элементов, входящих в живые организмы. Молекулярный (вещественный) состав отражает соотношение молекул веществ.

Химические элементы входят в состав клеток в виде ионов и молекул неорганических и органических веществ. Важнейшие неорганические вещества в клетке - вода и минеральные соли, важнейшие органические вещества - углеводы, липиды, белки и нуклеиновые кислоты.

Вода - преобладающий компонент всех живых организмов. Среднее содержание воды в клетках большинства живых организмов составляет около 70 %.

Минеральные соли в водном растворе клетки диссоциируют на катионы и анионы. Наиболее важные катионы - К+, Са2+, Mg2+, Na+, NHJ, анионы - Cl-, SO2-, HPO2-, H2PO-, НСО-, NO-.

Углеводы - органические соединения, состоящие из одной или многих молекул простых сахаров. Содержание углеводов в животных клетках составляет 1-5 %, а в некоторых клетках растений достигает 70 %.

Липиды - жиры и жироподобные органические соединения, практически нерастворимые в воде. Их содержание в разных клетках сильно варьирует: от 2-3 до 50-90% в клетках семян растений и жировой ткани животных.

Белки - это биологические гетерополимеры, мономерами которых являются аминокислоты. В образовании белков участвует только 20 аминокислот. Они называются фундаментальными, или основными. Некоторые из аминокислот не синтезируются в организмах животных и человека и должны поступать с растительной пищей (они называются незаменимыми).

Нуклеиновые кислоты. Существует два типа нуклеиновых кислот: ДНК и РНК. Нуклеиновые кислоты - полимеры, мономерами которых служат нуклеотиды.

Строение клетки

Становление клеточной теории

  • Роберт Гук в 1665 году обнаружил клетки в срезе пробки и впер­вые применил термин «клетка».
  • Антони ван Левенгук открыл одноклеточные организмы.
  • Маттиас Шлейден в 1838 году и Томас Шванн в 1839 году сфор­мулировали основные положения клеточной теории. Однако они ошибочно считали, что клетки возникают из первичного неклеточ­ного вещества.
  • Рудольф Вирхов в 1858 году доказал, что все клетки образуются из других клеток путём клеточного деления.

Основные положения клеточной теории

  1. Клетка является структурной единицей всего живого. Все живые организмы состоят из клеток (исключение составляют вирусы).
  2. Клетка является функциональной единицей всего живого. Клетка проявляет весь комплекс жизненных функций.
  3. Клетка является единицей развития всего живого. Новые клетки образуются только в результате деления исходной (материнской) клетки.
  4. Клетка является генетической единицей всего живого. В хромосомах клетки содержится информация о развитии всего организма.
  5. Клетки всех организмов сходны по химическому составу, строению и функциям.

Типы клеточной организации

Среди живых организмов только вирусы не имеют клеточного строения. Все остальные организмы представлены клеточными формами жизни. Различают два типа клеточной организации: прокариотический и эукариотический. К прокариотам относятся бактерии, к эукариотам - растения, грибы и животные.

Прокариотические клетки устроены сравнительно просто. Они не имеют ядра, область расположения ДНК в цитоплазме называется нуклеоидом, единственная молекула ДНК кольцевая и не связана с белками, клетки меньше эукариотических, в состав клеточной стенки входит гликопептид — муреин, мембранные органеллы отсутствуют, их функции выполняют впячивания плазматической мембраны, рибосомы мелкие, микротрубочки отсутствуют, поэтому цитоплазма неподвижна, а реснички и жгутики имеют особую структуру.

Эукариотические клетки имеют ядро, в котором находятся хромосомы — линейные молекулы ДНК, связанные с белками, в цитоплазме расположены различные мембранные органеллы.

Растительные клетки отличаются наличием толстой целлюлозной клеточной стенки, пластид, крупной центральной вакуоли, смещающей ядро к периферии. Клеточный центр высших растений не содержит центриоли. Запасным углеводом является крахмал.

Клетки грибов имеют клеточную оболочку, содержащую хитин, в цитоплазме имеется центральная вакуоль, отсутствуют пластиды. Только у некоторых грибов в клеточном центре встречается центриоль. Главным резервным углеводом является гликоген.

Животные клетки имеют, как правило, тонкую клеточную стенку, не содержат пластид и центральной вакуоли, для клеточного центра характерна центриоль. Запасным углеводом является гликоген.

Строение эукариотической клетки

Типичная эукариотическая клетка состоит из трех компонентов: оболочки, цитоплазмы и ядра.

Клеточная оболочка

Снаружи клетка окружена оболочкой, основу которой составляет плазматическая мембрана, или плазмалемма, имеющая типичное строение и толщину 7,5 нм.

Клеточная оболочка выполняет важные и весьма разнообразные функции: определяет и поддерживает форму клетки; защищает клетку от механических воздействий проникновения повреждающих биологических агентов; осуществляет рецепцию многих молекулярных сигналов (например, гормонов); ограничивает внутреннее содержимое клетки; регулирует обмен веществ между клеткой и окружающей средой, обеспечивая постоянство внутриклеточного состава; участвует в формировании межклеточных контактов и различного рода специфических выпячивании цитоплазмы (микроворсинок, ресничек, жгутиков).

Углеродный компонент в мембране животных клеток называется гликокаликсом.

Обмен веществ между клеткой и окружающей ее средой происходит постоянно. Механизмы транспорта веществ в клетку и из нее зависят от размеров транспортируемых частиц. Малые молекулы и ионы транспортируются клеткой непосредственно через мембрану в форме активного и пассивного транспорта.

В зависимости от вида и направления различают эндоцитоз и экзоцитоз.

Поглощение и выделение твердых и крупных частиц получило соответственно названия фагоцитоз и обратный фагоцитоз, жидких или растворенных частичек – пиноцитоз и обратный пиноцитоз.

Цитоплазма

Цитоплазма представляет собой внутреннее содержимое клетки и состоит из гиалоплазмы и находящихся в нем разнообразных внутриклеточных структур.

Гиалоплазма (матрикс) – это водный раствор неорганических и органических веществ, способный изменять свою вязкость и находящиеся в постоянном движении. Способность к движению или, течению цитоплазмы, называют циклозом.

Матрикс – это активная среда, в которой протекают многие физические и химические процессы и которая объединяет все элементы клетки в единую систему.

Цитоплазматические структуры клетки представлены включениями и органоидами. Включения – относительно непостоянные, встречающиеся в клетках некоторых типов в определенные моменты жизнедеятельности, например, в качестве запаса питательных веществ (зерна крахмала, белков, капли гликогена) или продуктов подлежащих выделению из клетки. Органоиды – постоянные и обязательные компоненты большинства клеток, имеющим специфическую структуру и выполняющим жизненно важную функцию.

К мембранным органоидам эукариотической клетки относят эндоплазматическую сеть, аппарат Гольджи, митохондрии, лизосомы, пластиды.

Эндоплазматическая сеть. Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети.

Эндоплазматическая сеть неоднородна по своему строению. Известны два ее типа — гранулярная и гладкая. На мембранах каналов и полостей гранулярной сети располагается множество мелких округлых телец — рибосом, которые придают мембранам шероховатый вид. Мембраны гладкой эндоплазматической сети не несут рибосом на своей поверхности.

Эндоплазматическая сеть выполняет много разнообразных функций. Основная функция гранулярной эндоплазматической сети — участие в синтезе белка, который осуществляется в рибосомах.

На мембранах гладкой эндоплазматической сети происходит синтез липидов и углеводов. Все эти продукты синтеза накапливаются н каналах и полостях, а затем транспортируются к различным органоидам клетки, где потребляются или накапливаются в цитоплазме в качестве клеточных включений. Эндоплазматическая сеть связывает между собой основные органоиды клетки.

Аппарат Гольджи

Во многих клетках животных, например в нервных, он имеет форму сложной сети, расположенной вокруг ядра. В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. Строение этого органоида сходно в клетках растительных и животных организмов, несмотря на разнообразие его формы.

В состав аппарата Гольджи входят: полости, ограниченные мембранами и расположенные группами (по 5-10); крупные и мелкие пузырьки, расположенные на концах полостей. Все эти элементы составляют единый комплекс.

Аппарат Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки — белки, углеводы и жиры. Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме. Например, в клетках поджелудочной железы млекопитающих синтезируются пищеварительные ферменты, которые накапливаются в полостях органоида. Затем образуются пузырьки, наполненные ферментами. Они выводятся из клеток в проток поджелудочной железы, откуда перетекают в полость кишечника. Еще одна важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран. Благодаря деятельности аппарата Гольджи происходят обновление и рост плазматической мембраны.

Митохондрии

В цитоплазме большинства клеток животных и растений содержатся мелкие тельца (0,2-7 мкм) — митохондрии (греч. «митос» — нить, «хондрион» — зерно, гранула).

Митохондрии хорошо видны в световой микроскоп, с помощью которого можно рассмотреть их форму, расположение, сосчитать количество. Внутреннее строение митохондрий изучено с помощью электронного микроскопа. Оболочка митохондрии состоит из двух мембран — наружной и внутренней. Наружная мембрана гладкая, она не образует никаких складок и выростов. Внутренняя мембрана, напротив, образует многочисленные складки, которые направлены в полость митохондрии. Складки внутренней мембраны называют кристами (лат. «криста» — гребень, вырост) Число крист неодинаково в митохондриях разных клеток. Их может быть от нескольких десятков до нескольких сотен, причем особенно много крист в митохондриях активно функционирующих клеток, например мышечных.

Митохондрии называют «силовыми станциями» клеток» так как их основная функция — синтез аденозинтрифосфорной кислоты (АТФ). Эта кислота синтезируется в митохондриях клеток всех организмов и представляет собой универсальный источник энергии, необходимый для осуществления процессов жизнедеятельности клетки и целого организма.

Новые митохондрии образуются делением уже существующих в клетке митохондрий.

Лизосомы

Представляют собой небольшие округлые тельца. От Цитоплазмы каждая лизосома отграничена мембраной. Внутри лизосомы находятся ферменты, расщепляющие белки, жиры, углеводы, нуклеиновые кислоты.

К пищевой частице, поступившей в цитоплазму, подходят лизосомы, сливаются с ней, и образуется одна пищеварительная вакуоль, внутри которой находится пищевая частица, окруженная ферментами лизосом. Вещества, образовавшиеся в результате переваривания пищевой частицы, поступают в цитоплазму и используются клеткой.

Обладая способностью к активному перевариванию пищевых веществ, лизосомы участвуют в удалении отмирающих в процессе жизнедеятельности частей клеток, целых клеток и органов. Образование новых лизосом происходит в клетке постоянно. Ферменты, содержащиеся в лизосомах, как и всякие другие белки синтезируются на рибосомах цитоплазмы. Затем эти ферменты поступают по каналам эндоплазматической сети к аппарату Гольджи, в полостях которого формируются лизосомы. В таком виде лизосомы поступают в цитоплазму.

Пластиды

В цитоплазме клеток всех растений находятся пластиды. В клетках животных пластиды отсутствуют. Различают три основных типа пластид: зеленые — хлоропласты; красные, оранжевые и желтые — хромопласты; бесцветные — лейкопласты.

Обязательными для большинства клеток являются также органоиды, не имеющие мембранного строения. К ним относятся рибосомы, микрофиламенты, микротрубочки, клеточный центр.

Рибосомы. Рибосомы обнаружены в клетках всех организмов. Это микроскопические тельца округлой формы диаметром 15-20 нм. Каждая рибосома состоит из двух неодинаковых по размерам частиц, малой и большой.

В одной клетке содержится много тысяч рибосом, они располагаются либо на мембранах гранулярной эндоплазматической сети, либо свободно лежат в цитоплазме. В состав рибосом входят белки и РНК. Функция рибосом — это синтез белка. Синтез белка — сложный процесс, который осуществляется не одной рибосомой, а целой группой, включающей до нескольких десятков объединенных рибосом. Такую группу рибосом называют полисомой. Синтезированные белки сначала накапливаются в каналах и полостях эндоплазматической сети, а затем транспортируются к органоидам и участкам клетки, где они потребляются. Эндоплазматическая сеть и рибосомы, расположенные на ее мембранах, представляют собой единый аппарат биосинтеза и транспортировки белков.

Микротрубочки и микрофиламенты

Нитевидные структуры, состоящие из различных сократительных белков и обуславливающие двигательные функции клетки. Микротрубочки имеют вид полых цилиндров, стенки которых состоят из белков – тубулинов. Микрофиламенты представляют собой очень тонкие, длинные, нитевидные структуры, состоящие из актина и миозина.

Микротрубочки и микрофиламенты пронизывают всю цитоплазму клетки, формируя её цитоскелет, обуславливают циклоз, внутриклеточные перемещения органелл, расхождение хромосом при делении ядерного материала и т.д.

Клеточный центр (центросома). В клетках животных вблизи ядра находится органоид, который называют клеточным центром. Основную часть клеточного центра составляют два маленьких тельца — центриоли, расположенные в небольшом участке уплотненной цитоплазмы. Каждая центриоль имеет форму цилиндра длиной до 1 мкм. Центриоли играют важную роль при делении клетки; они участвуют в образовании веретена деления.

В процессе эволюций разные клетки приспосабливались к обитанию в различных условиях и выполнению специфических функции. Это требовало наличия в них особых органоидах, которые называют специализированными в отличие от рассмотренных выше органоидов общего назначения. К их числу относят сократительные вакуоли простейших, миофибриллы мышечного волокна, нейрофибриллы и синаптические пузырьки нервных клеток, микроворсинки эпителиальных клеток, реснички и жгутики некоторых простейших.

Ядро

Ядро – наиболее важный компонент эукариотических клеток. Большинство клеток имеют одно ядро, но встречаются и многоядерные клетки (у ряда простейших, в скелетных мышцах позвоночных). Некоторые высоко специализированные клетки утрачивают ядра (эритроциты млекопитающих, например).

Ядро, как правило, имеет шаровидную или овальную форму, реже может быть сегментированным или веретеновидном. В состав ядра входят ядерная оболочка и кариоплазма, содержащая хроматин (хромосомы) и ядрышки.

Ядерная оболочка образована двумя мембранами (наружной и внутренней) и содержит многочисленные поры, через которые между ядром и цитоплазмой происходит обмен различными веществами.

Кариоплазма (нуклеоплазма) представляет собой желеобразный раствор, в котором находятся разнообразные белки, нуклеотиды, ионы, а также хромосомы и ядрышко.

Ядрышко – небольшое округлое тельце, интенсивно окрашивающееся и обнаруживающееся в ядрах неделящихся клеток. Функция ядрышка – синтез рРНК и соединение их с белками, т.е. сборка субчастиц рибосом.

Хроматин – специфически окрашивающиеся некоторыми красителями глыбки, гранулы и нитчатые структуры, образованные молекулами ДНК в комплексе с белками. Различные участки молекул ДНК в составе хроматина обладает разной степенью спирализации, а потому различаются интенсивностью окраски и характером генетической активности. Хроматин представляет собой форму существования генетического материала в не делящихся клетках и обеспечивает возможность удвоение и реализации заключенной в нем информации. В процессе деления клеток происходит спирализация ДНК и хроматиновые структуры образуют хромосомы.

Хромосомы – плотные, интенсивно окрашивающиеся структуры, которые являются единицами морфологической организации генетического материала и обеспечивают его точное распределение при делении клетки.

Число хромосом в клетках каждого биологического вида постоянно. Обычно в ядрах клеток тела (соматических) хромосомы представлены парами, в половых клетках они не парны. Одинарный набор хромосом в половых клетках называют гаплоидным (n), набор хромосом в соматических клетках диплоидным (2n). Хромосомы разных организмов различаются размерами и формой.

Диплоидный набор хромосом клеток конкретного вида живых организмов, характеризующийся числом, величиной и формой хромосом, называют кариотипом. В хромосомном наборе соматических клеток парные хромосомы называют гомологичными, хромосомы из разных пар — негомологичными. Гомологичные хромосомы одинаковы по размерам, форме, составу (одна унаследована от материнского, другая – от отцовского организма). Хромосомы в составе кариотипа делят также на аутосомы, или неполовые хромосомы, одинаковые у особей мужского и женского, и гетерохромосомы, или половые хромосомы, участвующие в определении пола и различающиеся у самцов и самок. Кариотип человека представлен 46 хромосомами (23 пары): 44 аутосомы и 2 половые хромосомы (у женского пола две одинаковые X-хромосомы, у мужского – X- и Y- хромосомы).

Ядро осуществляет хранение и реализацию генетической информации, управление процессом биосинтеза белка, а через белки – всеми другими процессами жизнедеятельности. Ядро участвует в репликации и распределении наследственной информации между дочерними клетками, а следовательно, и в регуляции клеточного деления и процессов развития организма.

Похожие статьи