Глиальные клетки (нейроглия). Что такое Синапс? Нервные клетки контактируют друг с другом посредством

23.06.2019

Периферическая нервная система - условно выделяемая часть нервной системы, структуры которой находятся вне головного и спинного мозга.

Нервная система состоит из клеток - нейронов , функция которых состоит в переработке и распространении информации. Нейроны контактируют друг с другом посредством соединений - синапсов . Один нейрон передает информацию другому через синапсы при помощи химических переносчиков - медиаторов . Нейроны делят на 2 ти­па: возбуждающие и тормозные . Тело нейрона окружают густо ветвящиеся отростки - дендриты , которые предназначены для приема информации. Отросток нервной клетки, передающий нервные импульсы, называется аксоном . Его длина у человека может достигать 1 метра.

Периферическая нервная система подразделяется на вегетативную нервную систему, отвечающую за постоянство внутренней среды организма, и соматическую нервную систему , иннервирующую (снабжающую нервами) мыш­цы, кожу, связки.

В состав периферической нервной системы (или периферического отдела нервной системы) входят нервы, отходящие от головного мозга - черепные нервы и от спинного мозга - спинномоз­говые нервы, а также нервные клетки, выселив­шиеся за пределы центральной нервной системы. В зависимости от того, какого вида нервные волокна преимущественно входят в состав нерва, различают нервы двигательные, чувствительные, смешанные и автономные (вегетативные).

Нервы появляются на поверхности мозга двигательными или чувствительными корешками. При этом двигательные корешки являются аксонами двигательных клеток, находящихся в спинном и головном мозге, и достигают иннервируемого органа не прерываясь, а чувствительные - аксонами нервных клеток спинномозговых узлов. К периферии от узлов чувствительные и двигательные волокна образуют смешанный нерв.

Все периферические нервы на основании их анатомических особенностей делят на черепные нервы -12 пар, спинномозговые нервы - 31 пара, автономные (вегетативные) нервы.

Черепные нервы отходят от головного мозга и к ним относят:

  • 1-я пара - обонятельный нерв
  • 2-я пара - зрительный нерв
  • 3-я пара - глазодвигательный нерв
  • 4-я пара - блоковый нерв
  • 5-я пара - тройничный нерв
  • 6-я пара - отводящий нерв
  • 7-я пара - лицевой нерв
  • 8-я пара - преддверноулитковый нерв
  • 9-я пара - языкоглоточный нерв
  • 10-я пара - блуждающий нерв
  • 11-я пара - добавочный нерв
  • 12-я пара - подъязычный нерв

Через периферический нерв, спинномозговой узел и задний корешок нервные импульсы попадают в спинной мозг, то есть в центральную нервную систему.

Восходящие волокна от ограниченного участка тела собираются воедино и образуют периферический нерв . Волокна всех типов (поверхностной и глубокой чувствительности, волокна, иннервирующие скелетные мышцы, и волокна, иннервирующие внутренние органы, потовые железы и гладкие мышцы сосудов) объединяются в пучки, окруженные 3 соединительнотканными оболочками (эндоневрий, периневрий, эпиневрий) и формируют нервный кабель.

После того как периферический нерв через межпозвонковое отверстие проникает в позвоночный канал, он раздваивается на передний и задний спинномозговые корешки.

Передние корешки покидают спинной мозг, задние - в него входят. Внутри нервных сплетений, располагающихся вне позвоночного канала, волокна периферических нервов переплетаются таким образом, что в конечном итоге во­локна от одного отдельного нерва оказываются на различных уровнях в составе разных спинномозговых нервов.

В состав периферического нерва входят волокна из нескольких различных корешковых сегментов.

Спинномозговые нервы в количестве 31 пары распределяются на:

  • шейные нервы- 8 пар
  • грудные нервы -12 пар
  • поясничные нервы - 5 пар
  • крестцовые нервы - 5 пар
  • копчиковый нерв - 1 пара


Каждый спинномозговой нерв является смешанным нервом и образуется путем слияния принадлежащих ему 2 корешков: чувствительного корешка, или заднего корешка, и двигательного корешка, или переднего корешка. В центральном направлении каждый корешок связан со спинным мозгом при помощи корешковых нитей. Задние корешки являются более толстыми и в своем составе содержат спинномозговой узел. Передние корешки узлов не имеют. Большинство спинномозговых узлов залегает в межпозвоночных отверстиях.

Внешне спинномозговой узел выглядит как утолщение заднего корешка, расположенное чуть ближе к центру от места слияния переднего и заднего корешков. В самом спинно­мозговом узле синапсов нет.

Деятельность клеток в организме многоклеточные животные координируется «химическими посредниками» и нервными клетками. В течение последние несколькие лет удалось в значительной мере выяснить природу возникновения и передачи нервного импульса.

Чем более высокое место занимает организм в царстве животных, тем важнее становится роль системы клеток, предназначенной для координации его деятельности. Природа создала две различные координирующие системы. Одна из них основана на выделении и распространении по организму «химических посыльных» - гормонов, вырабатываемых некоторыми специализированными клетками и способных регулировать деятельность клеток, находящихся в других частях тела. Вторая система, способная к гораздо более быстрому и к тому же избирательному действию, представляет собой специализированную систему нервных клеток, или нейронов, функция которых состоит в том, чтобы получать и передавать распоряжения при помощи электрических импульсов, распространяющихся по определенным путям. Обе эти координирующие системы возникли в процессе эволюции очень давно, причем вторая из них, а именно нервная система, претерпела особенно значительное эволюционное развитие, завершившееся созданием удивительного и загадочного органа - человеческого мозга.

Наши знания относительно работы миллионов клеток в нашем головном мозге находятся в самом зачаточном состоянии. Однако этих знаний в общем достаточно для того, чтобы выполнить поставленную здесь задачу - описать, а отчасти и объяснить, каким образом отдельные клетки (нейроны) генерируют и передают электрические импульсы, составляющие основной элемент того кода, по которому действует внутренняя система связи человеческого организма.

Большую часть нервных клеток составляют нейроны двух типов - чувствительные и двигательные. Чувствительные нейроны собирают и передают высшим центрам нервной системы импульсы, возникающие в специальных рецепторных областях, функция которых состоит в инспектировании внешней и внутренней среды организма. Двигательные нейроны передают импульсы от высших центров к «рабочим» клеткам (обычно мышечным клеткам), т. е. клеткам, от которых непосредственно зависит реакция организма на изменения в обеих этих средах. В простых рефлекторных реакциях передача сигналов от чувствительных нейронов к двигательным происходит автоматически и обеспечивается относительно простыми системами синапсов, которые довольно хорошо изучены.

В процессе эмбрионального развития из тела нервной клетки - будь то чувствительная или двигательная клетка - вырастает длинный отросток аксон, который каким-то неизвестным образом растет к предназначенной ему точке на периферии, с тем чтобы вступить в контакт с мышцей или кожей. У взрослого человека длина аксона может достигать 1-1,5 метра при толщине менее 0,025 миллиметра. Аксон образует своего рода миниатюрный телеграфный провод для передачи сообщений от периферии к телу нервной клетки, которая лежит в спинном или в головном мозге под защитой позвоночника или черепа. Изолированные периферические нервные волокна изучали, вероятно, более интенсивно, чем любую другую ткань, несмотря на то, что эти волокна представляют собой лишь фрагменты клеток, отсеченные как от своих клеточных ядер, так и от своих периферических окончаний. Тем не менее такие изолированные нервные волокна довольно долго сохраняют способность передавать нервные импульсы и могут обычно передать не один десяток тысяч импульсов, прежде чем перестанут действовать. Это наблюдение вместе с рядом других убеждает нас в том, что тело нервной клетки и заключенное в нем ядро, по-видимому, каким-то образом «заботятся» о своем отростке, управляют его ростом и, если понадобится, восстанавливают повреждения, хотя и не принимают непосредственного участия в передаче сигналов.

Долгие годы шли споры по вопросу о том, приложимо ли представление о клетке как основной структурной единице к нервной системе и ее функциональным связям. Некоторые исследователи полагали, что развивающаяся нервная клетка буквально врастает в цитоплазму всех тех клеток, с которыми она вступает в функциональное взаимодействие. Этот вопрос нельзя было решить окончательно до появления электронного микроскопа, обладающего высокой разрешающей способностью. Оказалось, что нервная клетка на большей части своей поверхности, включая и поверхность всех ее отростков, действительно плотно обернута другими клетками, однако цитоплазма этих клеток отделена от цитоплазмы нервной клетки ясно выраженными мембранами. Кроме того, между мембранами нервной клетки и окружающих ее других клеток имеется небольшой зазор, обычно толщиной 100-200 ангстремов.

Часть этих клеточных контактов представляет собой синапсы - точки, в которых происходит передача сигналов от одной клетки к следующему звену цепи. Однако синапсы встречаются только на теле нейрона или близ него, а также у периферических окончаний аксона. Большая часть покрывающих клеток, в частности клетки, облекающие аксон, вообще не относится к нервным клеткам. Их функция все еще остается загадкой. Некоторые из этих сопутствующих клеток называются шванновскими клетками, другие - глиальными клетками. Эти клетки, по-видимому, не играют никакой роли в самом процессе передачи импульса: возможно, что они участвуют в нем лишь косвенно, оказывая влияние на электрическое поле вокруг аксона. Весьма знаменательно, например, что на поверхности изолированных мышечных волокон (которые очень близки к нервным волокнам по своей способности ^передавать электрические импульсы) таких клеток-сателлитов очень немного.

Одна из функций сателлитов аксона заключается в образовании так называемой мякотной оболочки - сегментированного изолирующего футляра, покрывающего периферические нервные волокна позвоночных животных и улучшающего их проводящую способность. Благодаря электронно-микроскопическим исследованиям Б. Бен-Герен-Узман и Ф. Шмитта мы теперь знаем, что каждый сегмент мякотной оболочки образован шванновской клеткой, которая содержит ядро; цитоплазма шванновской клетки плотно закручивается в спираль вокруг аксона, образуя многослойный футляр. Отдельные сегменты оболочки разделены промежутками, так называемыми перехватами Ранвье, в которых происходит регенерация электрического сигнала.

Существуют и нервные волокна других типов, лишенные мякотной оболочки, но даже эти волокна покрыты одним слоем шванновских клеток. Возможно, именно потому, что аксон отходит так далеко от ядра нервной клетки, ему необходимо это тесное соприкосновение с имеющими ядро клетками-сателлитами. Мышечные волокна, в отличие от изолированных аксонов, представляют собой вполне самостоятельные клетки, в цитоплазме которых содержатся ядра; с наличием ядра и связана, возможно, их способность обходиться без клеток-сателлитов. Какова бы ни была функция этих сателлитов, они во всяком случае не могут в течение сколько-нибудь значительного времени поддерживать жизнь аксона после того, как его отсекли от тела клетки; спустя несколько дней такой отсеченный отросток неизменно разрушается и погибает. Каким образом ядро нервной клетки в течение всей жизни служит центром, восстанавливающим повреждения, и как именно оно распространяет свое влияние на самые отдаленные участки аксона, до сих пор остается тайной (ведь если бы, например, это влияние распространялось за счет обычной диффузии, то для покрытия такого расстояния понадобились бы годы).

Методы экспериментальной физиологии оказались гораздо более плодотворными в применении к исследованию процессов непосредственного проведения импульсов по нерву, чем к изучению не менее важных, но гораздо труднее поддающихся исследованию длительных процессов. Мы очень мало знаем относительно химического взаимодействия между нервом и его сателлитами или относительно сил, которые направляют растущий нерв по определенному пути и побуждают его к образованию синаптических связей с другими клетками. Ничего не известно нам также и о том, каким образом клетки накапливают информацию, т. е. в чем состоит механизм памяти. Поэтому всю остальную часть этой статьи мы посвятим почти исключительно нервным импульсам и способу их передачи через узкие синаптические щели, отделяющие одну нервную клетку от другой.

Большая часть наших сведений относительно нервной клетки получена при изучении гигантского аксона кальмара, достигающего в толщину почти миллиметра. К этому волокну очень легко прикладывать микроэлектроды или наблюдать за поступлением и выходом из него веществ, меченных радиоактивными изотопами. Оболочка волокна разделяет два водных раствора, которые обладают почти одинаковой электропроводностью и содержат примерно одинаковое число электрически заряженных частиц, или ионов. Однако химический состав этих двух растворов совершенно различен. Во внешнем растворе более 90% заряженных частиц составляют ионы натрия (заряженные положительно) и ионы хлора (заряженные отрицательно). В растворе, находящемся внутри клетки, совокупность этих ионов составляет менее 10% растворенных веществ; здесь основную часть положительно заряженных ионов образуют ионы калия, а отрицательные ионы представлены разнообразными органическими частицами (которые, несомненно, синтезируются в самой клетке), слишком крупными для того, чтобы диффундировать сквозь мембрану аксона. Поэтому концентрация ионов натрия снаружи примерно в 10 раз выше, чем внутри аксона; концентрация же ионов калия, напротив, внутри аксона в 30 раз выше, чем снаружи. Хотя проницаемость мембраны аксона для всех этих ионов невелика, тем не менее она неодинакова для разных ионов; ионы калия и хлора проходят сквозь эту мембрану гораздо легче, чем ионы натрия и крупные органические ионы. В результате возникает разность потенциалов, достигающая 60-90 милливольт, причем внутреннее содержимое клетки оказывается заряженным отрицательно по отношению к внешнему раствору.

Для поддержания этих различий в концентрации ионов нервная клетка располагает своего рода насосом, который выкачивает ионы натрия через мембрану наружу с такой же скоростью, с какой они проникают в клетку в направлении электрохимического градиента. Проницаемость поверхности покоящейся клетки для натрия обычно столь низка, что проникновение в клетку ионов натрия очень невелико; поэтому на совершение работы, связанной с процессом выкачивания, затрачивается лишь небольшая часть той энергии, которая непрерывно освобождается в процессе метаболизма клетки. Мы не знаем подробностей относительно работы этого насоса, однако она, по-видимому, связана с обменом ионов натрия на ионы калия; иными словами, на каждый ион натрия, выбрасываемый через мембрану, клетка принимает один ион калия. Попав внутрь аксона, ионы калия перемещаются в нем так же свободно, как обычно перемещаются ионы в любом простом солевом растворе. Когда клетка находится в состоянии покоя, ионы калия просачиваются сквозь мембрану наружу, но довольно медленно.

Мембрана аксона похожа на мембраны других клеток. Она имеет примерно 50-100 ангстремов в толщину и снабжена тонким изолирующим слоем, состоящим из жировых веществ. Ее удельное сопротивление прохождению электрического тока примерно в 10 миллионов раз выше, чем сопротивление солевых растворов, омывающих ее снаружи и изнутри. Вместе с тем аксон был бы совершенно бесполезен, если бы он использовался просто в роли электрического провода. Сопротивление жидкости внутри аксона примерно в 100 миллионов раз выше, чем сопротивление медной проволоки, а мембрана его допускает в миллион раз более сильную утечку тока, чем обмотка хорошего провода. Если раздражать аксон электрическим током, слишком слабым, для того чтобы вызвать нервный импульс, то электрический сигнал становится расплывчатым и затухает, пройдя по волокну всего лишь несколько миллиметров.

Каким же образом аксон передает первичный импульс на расстояние свыше метра без затухания и без искажения?

Если повышать интенсивность электрического сигнала, приложенного к мембране нервной клетки, то в какой-то момент достигается уровень, на котором сигнал уже не затухает и не исчезает. При этом (если взято напряжение нужного знака) преодолевается некий порог и клетка становится «возбужденной». Аксон клетки уже не ведет себя как пассивный провод, а генерирует свой собственный импульс, который усиливает первоначально приложенный импульс. Усилившийся таким образом импульс, или пик, передается от одной точки к другой, не теряя своей силы, и распространяется с постоянной скоростью по всему аксону. Скорость распространения импульса по нервным волокнам позвоночных колеблется от нескольких метров в секунду (для тонких безмякотных волокон) до примерно 100 метров в секунду (для самых толстых мякотных волокон). Наибольшую скорость проведения - более 300 километров в час - мы встречаем в чувствительных и двигательных волокнах, управляющих поддержанием равновесия тела и быстрыми рефлекторными движениями. После передачи импульса нервное волокно на короткое время теряет способность возбуждаться, впадая в рефрактерное состояние, но спустя 1-2 тысячных секунды оно вновь оказывается готовым генерировать импульсы.

Электрохимические процессы, лежащие в основе нервного импульса, или, как его называют, потенциала действия, в течение последних 15 лет удалось в значительной мере выяснить. Как мы видели, разность потенциалов между внутренней и наружной поверхностью мембраны определяется главным образом различной проницаемостью мембраны для ионов; натрия и калия. Такая избирательная проницаемость свойственна многим мембранам, как природным, так и искусственным. Однако особенность, мембраны нервного волокна состоит в том, что степень ее проницаемости зависит в свою очередь от разности потенциалов между ее внутренней и наружной поверхностью, и в основе всего процесса проведения импульсов лежит, в сущности, это чрезвычайно своеобразное взаимное влияние.

А. Ходжкин и А. Хаксли установили, что искусственное понижение разности потенциалов между внутренней и наружной поверхностью мембраны немедленно вызывает повышение проницаемости мембраны для ионов натрия. Мы не знаем, почему происходит такое специфическое изменение проницаемости мембраны, однако последствия этого изменения чрезвычайно значительны. Когда ионы натрия, заряженные положительно, проникают сквозь мембрану, они вызывают локальное погашение части избыточного отрицательного заряда внутри аксона, что приводит к дальнейшему уменьшению разности потенциалов. Таким образом, это самоусиливающийся процесс, ибо проникновение нескольких ионов натрия сквозь мембрану дает возможность другим ионам последовать их примеру. Когда разность потенциалов между внутренней и наружной поверхностью мембраны понижается до порогового значения, ионы натрия проникают внутрь в таком количестве, что отрицательный заряд внутреннего раствора меняется на положительный; происходит как бы внезапное «воспламенение», в результате чего возникает нервный импульс, или потенциал действия. Этот импульс, регистрируемый осциллографом в виде пика, изменяет проницаемость мембраны аксона на участке, лежащем впереди той точки, через которую в данный момент проходит импульс, и создает условия, обеспечивающие проникновение натрия внутрь аксона; благодаря этому процесс, многократно повторяясь, распространяется вдоль аксона до тех пор, пока потенциал действия не пройдет по всей его длине.

Непосредственно позади движущегося импульса разыгрываются другие события. «Натриевая дверца», отворившаяся во время подъема пика, вновь затворяется, и теперь ненадолго оказывается отпертой «калиевая дверца». Это вызывает быстрое вытекание положительно заряженных ионов калия, что приводит к восстановлению первоначального отрицательного заряда внутри аксона. В течение нескольких тысячных секунды после того, как разность потенциалов между внутренней и наружной поверхностью мембраны вернулась к исходному уровню, сдвинуть эту разность потенциалов и вызвать возникновение нового импульса трудно. Однако проницаемость мембраны для разных ионов быстро возвращается к первоначальному уровню, после чего клетка оказывается готовой к генерации следующего импульса.

Поступление ионов натрия в аксон и следующий за ним выход ионов калия наружу происходят столь недолго и затрагивают столь незначительное число частиц, что процессы эти едва ли могут влиять на состав содержимого аксона в целом. Даже без пополнения запас ионов калия внутри аксона достаточно велик, чтобы обеспечить прохождение десятков импульсов. В живом организме ферментная система, управляющая работой натриевого насоса, без труда поддерживает клетки в состоянии готовности к генерации импульсов.

Этот сложный процесс - проведение сигнала (который должен был бы очень быстро затухнуть вследствие утечки в цепи) при участии многочисленных усилителей, располагающихся вдоль линии передачи, - обеспечивает условия, необходимые нашей нервной системе для осуществления связи на относительно большие расстояния в пределах организма. Он создает известную стереотипную систему кодирования для наших каналов связи - короткие импульсы, почти постоянные по силе и следующие друг за другом с различными интервалами, величина которых зависит исключительно от длительности рефрактерного периода нервной клетки. Для восполнения недостатков этой простой системы кодирования в организме имеются многочисленные, расположенные параллельно друг другу каналы связи (аксоны), каждый из которых представляет собой отросток отдельной нервной клетки. Например, в стволе зрительного нерва, отходящего от глаза, содержится более миллиона каналов, которые тесно соприкасаются друг с другом; все они способны передавать различные импульсы высшим центрам головного мозга.

Вернемся теперь к вопросу о том, что же происходит в синапсе - в точке, где импульс доходит до конца одной клетки и сталкивается с другой нервной клеткой. Самоусиливающийся процесс передачи импульса, действующий в пределах каждой отдельной клетки, не обладает способностью автоматически «перескакивать» через границы данной клетки на соседние клетки. И это вполне естественно. Ведь если бы сигналы, идущие по отдельным каналам в нервном пучке, могли бы перескакивать из одного канала в другой, то вся такая система связи не годилась бы просто никуда. Правда, в месте функциональных синаптических контактов промежуток между клеточными мембранами составляет обычно не более нескольких сот ангстремов. Однако на основании всего того, что нам известно о размерах области соприкосновения и об изолирующих свойствах клеточных мембран, трудно представить себе, чтобы между окончанием одной нервной клетки и внутренним содержимым другой существовала эффективная телеграфная связь. Убедительным опытом в этом

смысле может служить попытка передать подпороговый импульс - т. е. импульс, не вызывающий возникновения пика, - через синапс, отделяющий один из двигательных нервов от мышечного волокна. Если к такому двигательному нерву вблизи от синапса приложить слабый ток, то отводящий электрод, введенный непосредственно в мышечное волокно, не зарегистрирует никаких импульсов. Очевидно, в синапсе телеграфная связь, осуществлявшаяся нервным волокном, прерывается, и дальнейшая передача сообщений происходит при помощи какого-то иного процесса.

Природа этого процесса была открыта примерно 25 лет назад Г. Дэйлом и его сотрудниками. В некоторых отношениях он напоминает гормональный механизм, упомянутый в начале нашей статьи. Окончания двигательного нерва действуют, подобно железам, секретируя некий химический фактор (посредник, или медиатор). В ответ на переданный им импульс эти окончания выделяют особое вещество - ацетилхолин, которое быстро и эффективно диффундирует сквозь узкую синаптическую щель. Молекулы ацетилхолина соединяются с молекулами рецептора в области контакта с мышечным волокном и каким-то образом отворяют «ионные дверцы» этого волокна, давая возможность натрию проникнуть внутрь и вызвать генерацию импульса. Тех же результатов можно достигнуть при экспериментальном нанесении ацетилхолина на область контакта с мышечным волокном. Возможно, что подобные химические медиаторы участвуют в создании большинства контактов между клетками в нашей центральной нервной системе. Однако вряд ли можно думать, что ацетилхолин служит универсальным медиатором, действующим во всех этих случаях; поэтому многочисленные ученые ведут интенсивные исследования в поисках других естественных химических медиаторов.

Проблема передачи в синапсах распадается на два круга вопросов: 1) каким именно образом нервный импульс вызывает секрецию химического медиатора? 2) каковы те физико-химические факторы, которые определяют способность химического медиатора стимулировать соседнюю клетку к генерации импульса в одних случаях или тормозить эту генерацию - в других?

До сих пор мы ничего не сказали относительно торможения, хотя оно широко распространено в нервной системе и представляет собой одно из наиболее интересных проявлений нервной деятельности. Торможение происходит в тех случаях, когда нервный импульс служит для близлежащей клетки тормозом, препятствуя ее активации под влиянием возбуждающих сигналов, поступающих в нее в это же время по другим каналам. Импульс, проходящий по тормозному аксону, неотличим по своим электрическим характеристикам от импульса, проходящего по возбуждающему аксону. Однако, по всей вероятности, физико-химическое воздействие, которое он оказывает на синапс, носит иной характер. Возможно, что торможение происходит в результате процесса, который в какой-то степени стабилизирует мембранный потенциал (электризацию) воспринимающей клетки и препятствует доведению этой клетки до порога неустойчивости или до «точки воспламенения».

Существует несколько процессов, которые могли бы привести к такой стабилизации. Об одном из них мы уже упоминали: он возникает во время рефрактерного периода, наблюдающегося тотчас же после генерации импульса. В этот период мембранный потенциал стабилизируется на высоком уровне (отрицательный заряд внутреннего содержимого клетки составляет 80-90 милливольт), потому что «калиевая дверца» широко открыта, а «натриевая дверца» плотно прикрыта. Если медиатор может вызвать одно из этих состояний или даже оба, то его действие, несомненно, носит характер торможения. Можно с полным правом считать, что именно таким способом импульсы, поступающие от блуждающего нерва, уменьшают частоту сердечных сокращений; кстати сказать, медиатор, вырабатываемый блуждающим нервом, - это все тот же ацетилхолин, как это было обнаружено В. Леви 40 лет назад. Сходные эффекты наблюдаются в различных тормозных синапсах, расположенных в спинном мозге, однако химический характер участвующих в этом медиаторов до сих пор установить не удалось.

Торможение может также возникнуть в том случае, если два «антагонистических» аксона, принадлежащих двум разным клеткам, встретятся на одном и том же участке третьей клетки и выделят какие-либо химические вещества, способные конкурировать друг с другом. Хотя примеров подобного торможения в природе еще не обнаружено, однако в химии и фармакологии явление конкурентного торможения хорошо известно. (Например, парализующее действие яда кураре основано на его конкуренции с ацетилхолином. Молекулы кураре обладают способностью присоединяться к той области мышечного волокна, которая обычно свободна и вступает во взаимодействие с ацетилхолином.) Возможно также и обратное, т. е. что какое-то вещество, выделяемое окончанием тормозного нерва, действует на окончание возбуждающего нерва, понижая его секреторную функцию, а тем самым и количество выделяемого возбуждающего медиатора.

Итак, мы вновь упираемся в тот же вопрос: каким образом нервный импульс вызывает выделение медиатора? Проведенные недавно эксперименты показали, что действие нервных импульсов в месте соединения нерва с мышцей состоит не в том, чтобы вызвать процесс секреции медиатора, а в том, чтобы, изменяя мембранный потенциал, изменить скорость этого процесса, который происходит непрерывно. Даже при отсутствии какой бы то ни было стимуляции определенные участки нервных окончаний выделяют с неравномерными интервалами порции ацетилхолина, причем каждая такая порция содержит множество - возможно, тысячи - молекул.

Всякий раз при спонтанном выделении порции молекул медиатора в мышечном волокне, лежащем по другую сторону синапса, можно зарегистрировать внезапную небольшую местную реакцию. По прошествии одной тысячной секунды потенциал мышечной мембраны понижается на 0,5 милливольта, а затем в течение 20 тысячных секунды происходит восстановление потенциала. Систематически изменяя мембранный потенциал нервного окончания, удалось выявить определенную зависимость между этим мембранным потенциалом и скоростью секреции отдельных порций медиатора. По-видимому, скорость секреции возрастает примерно в 100 раз при понижении мембранного потенциала на каждые 30 милливольт. В состоянии покоя выделяется по одной порции медиатора в секунду на каждый синапс. Однако при кратковременном изменении потенциала «на 120 милливольт во время прохождения нервного импульса частота выделения порций медиатора на короткое время возрастает почти в миллион раз, в результате чего в течение долей миллисекунды одновременно выделяется несколько сот порций медиатора.

Чрезвычайно существенно, что медиатор всегда выделяется в виде мультимолекулярных порций определенного размера. Это, вероятно, объясняется какими-то особенностями микроскопической структуры нервных окончаний. Эти нервные окончания содержат своеобразное скопление так называемых пузырьков диаметром около 500 ангстремов каждый, в которых, возможно, и содержится медиатор, уже «расфасованный» и готовый к выделению. Можно предполагать, что когда эти пузырьки сталкиваются с мембраной аксона, как это, вероятно, часто происходит, то такое столкновение иногда приводит к выплескиванию содержимого пузырьков в синаптическую щель. Подобные предположения необходимо еще подтвердить прямыми данными, однако они позволяют дать разумное объяснение всему тому, что нам известно относительно спонтанного выделения дискретных порций ацетилхолина и ускорения этого выделения при различных естественных и экспериментальных условиях. Во всяком случае, эти предположения позволяют свести воедино функциональный и морфологический подход к одной и той же проблеме.

Ввиду скудности сведений, которыми мы располагаем, мы совершенно не коснулись многих интереснейших проблем длительных взаимодействий и приспособительных модификаций, которые, несомненно, происходят в нервной системе. Для изучения этих проблем физиологии, вероятно, придется разработать совершенно новые методы, не похожие на прежние. Возможно, что наша приверженность методам, позволившим столь успешно исследовать кратковременные реакции возбудимых клеток, помешала нам глубже проникнуть в проблемы обучения, памяти, выработки условных рефлексов, а также структурных и функциональных взаимодействий между нервными клетками и их соседями.

Нервная система человека состоит из миллионов нервных клеток, которые постоянно обмениваются информацией. Отростки одной клетки соединяются с десятками других и образуют особые щелевые контакты - синапсы. Как только нервный импульс доходит до места, где одна клетка соединяется с другой, выбрасывается небольшое количество химического посредника. Эти химические посредники (или нейромедиаторы) передают возбуждение от одной нервной клетки к другой. В некоторых случаях они могут передавать не возбуждение, а торможение, а иногда существенно влияют на внутренние процессы в клетке - например, изменяют экспрессию генов и заставляют клетку синтезировать новые белки.

Нейромедиаторы связывают нервные клетки и между собой, и с мышцами. Именно с помощью химических посредников нервная система регулирует работу почти всех внутренних органов. Выделяясь из окончаний вегетативной нервной системы, нейромедиаторы заставляют сердце биться медленнее ночью и быстрее днём, снижают артериальное давление, пока мы лежим, регулируют мочеиспускание во сне и так далее.

Только в начале XX века учёные сошлись на том, что нервная система - это множество нервных клеток, а не сложная сеть волокон. Многие исследователи до 1930-х годов не верили, что нервные клетки передают импульсы с помощью химических посредников.

Почему воевали «суповики» и «искровики»


В 1914 году британский фармаколог Генри Дейл работал над лекарствами, симулирующими работу вегетативной нервной системы. В результате кропотливой работы он выделил множество интересных молекул. Часть из них нашли своё клиническое применение, другие - нет. Среди последних была одна особая молекула - ацетилхолин. В экспериментах на мышах Дейл установил, что эта молекула повторяет действие одного отдела вегетативной нервной системы - парасимпатической нервной системы. Парасимпатическая нервная система замедляет дыхание во сне и сердцебиение, регулирует сексуальное возбуждение, выделение желудочного сока и другие физиологические эффекты. Эффект ацетилхолина продолжался всего минуты. Именно поэтому для медицинских целей это вещество было совершенно непригодно.

Через 20 лет после этого открытия исследователю из Австрии Отто Леви приснился сон с идеей эксперимента, доказывающего существование химических посредников. По воспоминаниям Леви (которые многие считают преувеличенными) он проснулся посреди ночи в 1921 году, сделал заметку с планом отличного эксперимента и вернулся в кровать. Утром идею он вспомнить не смог, а записи оказались каракулями. Но следующей ночью он проснулся опять, и в этот раз не стал ничего записывать, а прямиком отправился в лабораторию.

Леви препарировал двух лягушек и извлёк их сердца. Одно сердце - с частью блуждающего нерва, другое было изолировано от всех нервов. В спокойном состоянии вне тела сердца бились с постоянной частотой. Сердце с блуждающим нервом Леви поместил в специальный раствор и начал стимулировать нерв током. В результате сердцебиение замедлялось. Затем он достал сердце из раствора и поместил туда другое (без нервов), оно тут же замедлило свой ход. Эксперимент доказывал, что блуждающий нерв (часть парасимпатической нервной системы) замедляет сердцебиение с помощью химического посредника.

Многие исследователи, которые пытались повторить эксперимент, не смогли получить те же результаты. В 1926 году Леви попросили повторить его эксперимент публично на Международном физиологическом конгрессе в Стокгольме. Ему удалось это сделать 18 раз подряд.

Фактически публикация этих данных спровоцировала настоящую войну между фармакологами , которые поддержали теорию химической передачи возбуждения, и некоторыми нейрофизиологами, которые были уверены, что нервный импульс может передаваться только напрямую. Среди историков науки это противостояние получило название войны «суповиков» и «искровиков».

Леви долго работал над тем, чтобы идентифицировать химическое вещество, выделяющееся из окончания блуждающего нерва. Он провёл эксперименты со многими химическими соединениями и осторожно высказался на тему того, что это может быть ацетилхолин. Убедил его в этом его британский друг - Генри Дейл, который вспомнил о своих открытиях 20-летней давности. После вручения Дейлу и Леви Нобелевской премии в 1938 году критики поубавилось.

Джон Экклс, ещё один известный нейрофизиолог, был классическим сторонником теории электрической передачи. Его не убедили ни эксперименты, ни Нобелевская премия Леви. Во время Второй мировой войны Экклс работал в одной лаборатории со Стивеном Куффлером и Бернардом Кацем - двумя невероятно влиятельными сторонниками теории химической передачи. Буквально на его глазах Кац и Куффлер накапливали всё больше свидетельств в пользу химической теории. Cогласно истории, Экклс впал в депрессию, из которой его вытянул известный философ науки Карл Поппер. В 1951 году Экклс начал изучать спинной мозг. Он одним из первых доказал химическую передачу между нейронами спинного мозга и открыл тормозной медиатор - гамма-аминомасляную кислоту. В 1963 году он был удостоен Нобелевской премии.

Какие белки помогают нам помнить всё


Эрик Кэндел, выпускник медицинской школы Нью-Йоркского университета, разбирался, как работает память. Чтобы приблизиться к решению проблемы, он искал память у животных с максимально простой нервной системой. Поиски привели его к морскому зайцу (или аплизии). У него всего 20 тысяч крупных нервных клеток, которые легко разглядеть даже без микроскопа.

Привыкание. У аплизии (как и у многих моллюсков) есть жабры и небольшая
трубка - сифон, с помощью которой моллюски передвигаются, размножаются и выделяют продукты обмена во внешнюю среду. Если дотронуться до сифона аплизии, она тут же втянет его вместе с жабрами внутрь. Можно проделать это несколько раз, и аплизия перестанет втягивать жабры. Это один из самых простых видов памяти.

Сенситизация. Другой вид памяти у морского зайца - повышение чувствительности. Если перед тем, как дотронуться до сифона, ударить аплизию небольшим разрядом электрического тока в хвост, она начнёт более интенсивно втягивать жабры в ответ на любое прикосновение.

Условный рефлекс. В этом случае нужно сначала дотронуться до сифона (при этом жабры втянутся не очень сильно), потом ударить моллюска током (тут они втянутся куда сильнее) и проделать это много раз. В результате аплизия «ассоциирует» прикосновение с ударом тока и начинает втягивать жабры сильнее после обычного прикосновения без удара током.

В рефлексах втягивания жабр участвуют всего несколько нейронов. Сенсорный нейрон передаёт нервный импульс на моторный нейрон, который вызывает сокращение мышц и втягивание жабр. При ударе аплизии возбуждается ещё один нейрон - модуляторный. Он протягивается через всё тело моллюска и регулирует работу других нервных клеток. Когда аплизия запоминает, что ей следует сильнее втягивать жабры, связи между сенсорным и моторным нейронами усиливаются.

Именно эта маленькая молекула необходима для формирования памяти

Усиление связей возможно благодаря ещё одному нейромедиатору - серотонину. Он выделяется из окончания модуляторного нейрона и связывается со специальным рецептором на поверхности сенсорного нейрона. В результате запускается целый каскад биохимических реакций. С рецептором серотонина связаны так называемые G-белки, которые активируют фермент - аденилатциклазу.

Аденилатциклаза - очень популярный в нашем организме фермент. Она превращает АТФ (аденозин-трифосфат) - основной источник энергии в клетке - в циклический АМФ (аденозин-монофосфат), который в десятки раз усиливает действие серотонина. Одна молекула серотонина связывается всего с одним рецептором, а внутри клетки в ответ на это синтезируются сотни молекул циклического АМФ.

Именно эта маленькая молекула необходима для формирования памяти. Циклический АМФ заставляет работать другие ферменты. Например, в случае с запоминанием и усилением синаптической связи это протеинкиназа А, которая изменяет молекулу кальциевого канала в мембране нейрона. Из-за этого в клетку начинают активно поступать ионы кальция. Электрический потенциал в нервном окончании возрастает. Всего одного нервного импульса достаточно для того, чтобы высвободить куда больше глутамата и передать возбуждение на моторный нейрон.

Нервная система - иерархически организованная нервная ткань, пронизывающая весь организм и связывающая его в единое целое.

Нервная система - это сеть коммуникаций, которая обеспечивает взаимодействие организма с окружающей средой. В широком смысле понятие "окружающая среда" подразумевает как внешнюю среду (вне организма), так и внутреннюю (внутри организма). Таким образом, нервная система, обеспечивая интеграцию всех частей организма в единое целое, осуществляет умственную деятельность, связь организма с внешней средой (ощущения), управляет движениями, регулирует все функции, включая человеческую сексуальность и репродукцию (продолжение рода). Нервная система человека, в отличие от нервной системы высших животных, богата уникальными структурами и связями, которые являются морфофизиологическими субстратами мышления, творчества, членораздельной речи, трудовой деятельности. Все функции, включая умственную деятельность, осуществляют группы нервных клеток, связанных между собой многочисленными синапсами.

Нервная система состоит из следующих компонентов:

Сенсорные компоненты - реагируют на явления окружающей среды;

Интегративные компоненты - перерабатывают и хранят сенсорные и другие данные;

Двигательные компоненты - управляют движениями и секреторной деятельностью желез.

На микроскопическом уровне нервная система представляет собой очень сложное скопление разных клеток. Структурно-функциональной единицей нервной системы являются ервные клетки, или нейроны , образуют коммуникативную сеть нервной системы. Основная функция нейрона - получение, переработка, проведение и передача информации.

Нейроны специализируются на получении входящих сигналов и их передаче к другим нейронам или эффекторным клеткам. Другие клетки выполняют в нервной системе поддерживающие функции. Это клетки нейроглии (от греч. "глия" - клей). Их существует несколько типов. Одни глиальные клетки участвуют в поддержании состава межклеточной среды вокруг нейронов, другие образуют оболочку вокруг аксонов, благодаря которой увеличивается скорость проведения потенциалов действия.

Нейрон - основной структурный и функциональный элемент нервной системы; у человека насчитывается более ста миллиардов нейронов. Нейрон состоит из тела и отростков, обычно одного длинного отростка - аксона и нескольких коротких разветвленных отростков - дендритов . По дендритам импульсы следуют к телу клетки, по аксону - от тела клетки к другим нейронам, мышцам или железам. Благодаря отросткам нейроны контактируют друг с другом и образуют нейронные сети и круги, по которым циркулируют нервные импульсы.

Помимо опорных функций глия обеспечивает многообразные метаболические процессы в нервной ткани.

Нервную систему человека подразделяют на центральную и периферическую .

Центральная нервная система состоит из расширенного переднего конца нервной трубки - головного мозга и длинного цилиндрического спинного мозга .

В ЦНС выделяют серое вещество, которое представляет собой скопление тел нейронов, и белое вещество, состоящее из покрытых миелином аксонов, выполняющих роль проводников.

В функции центральной нервной системы входят интеграция и координация почти всех видов нервной активности , при этом центральная нервная система работает в тесном контакте с периферической нервной системой .

К периферической нервной системе относят отходящие от них парные спинномозговые и черепные нервы с корешками, их ветви, нервные окончания и ганглии (нервные узлы, образованные телами нейронов), нервные сплетения и периферические нервы , которые обеспечивают связь ЦНС с различными частями тела.

Состав внеклеточной жидкости вокруг большинства нейронов регулируется таким образом, чтобы клетки были защищены от резких изменений окружающей среды. Это обеспечивается регуляцией кровообращения в ЦНС, наличием гематоэнцефалического барьера , буферными функциями нейроглии, а также обменом веществ между цереброспинальной (спинномозговой) жидкостью (ЦСЖ) и внеклеточной жидкостью мозга.

На всем своем протяжении центральная нервная система покрыта тремя мозговыми оболочками и заключена в защитную костную капсулу, состоящую из черепа и позвоночника . Головной мозг, кровь и ЦСЖ находятся в полости черепа ( рис. 32.4). Снаружи мозг покрыт прочной твердой мозговой оболочкой ( dura mater), которая сращена с надкостницей черепа и позвоночника. Непосредственно к ткани мозга прилегает мягкая мозговая оболочка (pia mater). Между твердой и мягкой оболочками находится паутинная оболочка мозга ( aracnoidea), образующая сеть из перекладин соединительной ткани, благодаря которым между мягкой и паутинными оболочками образуется подпаутинное пространство мозга , заполненное спинномозговой жидкостью ( цереброспинальной жидкостью). Большая часть цереброспинальной жидкости содержится в центральном канале спинного мозга , а в головном мозге она заполняет четыре расширенных участка - мозговых желудочка . Спинномозговая жидкость омывает мозг снаружи и изнутри, и с ней соприкасаются кровеносные сосуды , обеспечивающие снабжение нервных тканей питательными веществами и кислородом и удаление продуктов обмена. В крыше мозга находятся переднее сосудистое сплетение мозга и заднее сосудистое сплетение мозга , клетки которых выделяют спинномозговую жидкость. Объем спиномозговой жидкости составляет около 100 мл. Она выполняет питательную, выделительную и опорную функции и защищает нервные клетки от механических ударов о твердую костную поверхность. Ресничные клетки , выстилающие полость желудочков и центрального канала, поддерживают непрерывную циркуляцию спиномозговой жидкости.

Головной мозг человека весит около 1350 г; примерно 15% его массы (200 мл) приходится на внеклеточную жидкость. Объем крови внутри черепа составляет около 100 мл, столько же - внутричерепной объем ЦСЖ. Значит, общий объем внеклеточной жидкости в полости черепа равен примерно 400 мл.

Существует еще одна классификация, согласно которой единую нервную систему также условно подразделяют на две части: соматическую (анимальную) и вегетативную (автономную, особую часть нервной системы). Первая иннервирует главным образом тело (кости, скелетные мышцы, кожу) и обеспечивает связь организма с внешней средой. Вегетативная (автономная) нервная система иннервирует все внутренности, железы (в том числе и эндокринные), гладкие мышцы органов и кожи, сосуды и сердце, а также обеспечивает обменные процессы во всех органах и тканях.

Нейрон (нервная клетка) - основной структурный и функциональный элемент нервной системы; у человека насчитывается более ста миллиардов нейронов. Нейрон состоит из тела и отростков, обычно одного длинного отростка - аксона и нескольких коротких разветвленных отростков - дендритов. По дендритам импульсы следуют к телу клетки, по аксону - от тела клетки к другим нейронам, мышцам или железам. Благодаря отросткам нейроны контактируют друг с другом и образуют нейронные сети и круги, по которым циркулируют нервные импульсы. Нейрон, или нервная клетка - это функциональная единица нервной системы. Нейроны восприимчивы к раздражению, то есть способны возбуждаться и передавать электрические импульсы от рецепторов к эффекторам. По направлению передачи импульса различают афферентные нейроны (сенсорные нейроны), эфферентные нейроны (двигательные нейроны) и вставочные нейроны. Каждый нейрон состоит из сомы (клетки диаметром от 3 до 100 мкм, содержащей ядро и другие клеточные органеллы, погруженные в цитоплазму) и отростков - аксонов и дендритов. На основании числа и расположения отростков нейроны делятся на униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные нейроны .

Основными функциями нервной клетки является восприятие внешних раздражений (рецепторная функция), их переработка (интегративная функция) и передача нервных влияний на другие нейроны или различные рабочие органы (эффекторная функция)

Особенности осуществления этих функций позволяют разделить все нейроны ЦНС на две большие группы:

1) Клетки, передающие информацию на большие расстояния (из одного отдела ЦНС в другой, от периферии к центру, от центра к исполнительному органу). Это крупные афферентные и эфферентные нейроны, имеющие на своём теле и отростках большое количество синапсов, как тормозящих, так и возбуждающих, и способные к сложным процессам переработки поступающих через них влияний.

2) Клетки, обеспечивающие межнейроальные связи в пределах органических нервных структур (промежуточные нейроны спинного мозга, коры больших полушарий и др.). Это мелкие клетки, воспринимающие нервные влияния только через возбуждающие синапсы. Эти клетки не способны к сложным процессам интеграции локальных синоптических влияний потенциалов, они служат передатчиками возбуждающих или тормозящих влияний на другие нервные клетки.

Воспринимающая функция нейрона. Все раздражения, поступающие в нервную систему, передаются на нейрон через определённые участки его мембраны, находящиеся в области синаптических контактов. 6.2 Интегративная функция нейрона. Общее изменение мембранного потенциала нейрона является результатом сложного взаимодействия (интеграции) местных ВПСП и ТПСП всех многочисленных активированных синапсов на теле и дендритах клетки.

Эффекторная функция нейрона. С появлением ПД, который в отличие от местных изменений мембранного потенциала (ВПСП и ТПСП) является распространяющимся процессом, нервный импульс начинает проводиться от тела нервной клетки вдоль по аксону к другой нервной клетке или рабочему органу, т.е. осуществляется эффекторная функция нейрона.

    Синапсы в ЦНС.

Синапс - это морфофункциональное образование ЦНС, которое обеспечивает передачу сигнала с нейрона на другой нейрон или с нейрона на эффекторную клетку. Все синапсы ЦНС можно классифицировать следующим образом.

1. По локализации: центральные и периферические (нервно-мышечный, нейросекреторный синапс вегетативной нервной системы).

2. По развитию в онтогенезе: стабильные и динамичные, появляющиеся в процессе индивидуального развития.

3. По конечному эффекту : тормозные и возбуждающие.

4. По механизму передачи сигнала : электрические, химические, смешанные.

5. Химические синапсы можно классифицировать:

а) по форме контакта - терминальные (колбообразное соединение) и преходящие (варикозное расширение аксона);

б) по природе медиатора – холинергические, адренергическис, дофаминергические

Электрические синапсы . В настоящее время признают, что в ЦНС имеются электрические синапсы. С точки зрения морфологии электрический синапс представляет собой щелевидное образование (размеры щели до 2 нм) с ионными мостиками-каналами между двумя контактирующими клетками. Петли тока, в частности при наличии потенциала действия (ПД), почти беспрепятственно перескакивают через такой щелевидный контакт и возбуждают, т.е. индуцируют генерацию ПД второй клетки. В целом, такие синапсы (они называются эфапсами) обеспечивают очень быструю передачу возбуждения. Но в то же время с помощью этих синапсов нельзя обеспечить одностороннее проведение, т. к. большая часть таких синапсов обладает двусторонней проводимостью. Кроме того, с их помощью нельзя заставить эффекторную клетку (клетку, которая управляется через данный синапс) тормозить свою активность. Аналогом электрического синапса в гладких мышцах и в сердечной мышце являются щелевые контакты типа нексуса.

Химические синапсы. По строению химические синапсы представляют собой окончания аксона (терминальные синапсы) или его варикозную часть (проходящие синапсы), которая заполнена химическим веществом - медиатором. В синапсе различают пресинаптический элемент, который ограничен пресинаптической мембраной, постсинаптический элемент, который ограничен постсипаптической мембраной, а также внесинаптическую область и синаптическую щель, величина которой составляет в среднем 50 нм.

    Рефлекторная дуга. Классификация рефлексов.

Рефлекс - реакция организма на изменения внешней или внутренней среды, осуществляемая при посредстве центральной нервной системы в ответ на раздражение рецепторов.

Все рефлекторные акты целостного организма разделяют на безусловные и условные рефлексы.Безусловные рефлексы передаются по наследству, они присущи каждому биологическому виду; их дуги формируются к моменту рождения и в норме сохраняются в течение всей жизни. Однако они могут изменяться под влиянием болезни. Условные рефлексы возникают при индивидуальном развитии и накоплении новых навыков. Выработка новых временных связей зависит от изменяющихся условий среды. Условные рефлексы формируются на основе безусловных и с участием высших отделов головного мозга. Их можно классифицировать на различные группы по ряду признаков.

1. По биологическому значению

А.)пищевые

Б.)оборонительные

В.)половые

Г.)ориентировочные

Д.)позно-тонические (рефлексы положения тела в пространстве)

Е.)локомоторные (рефлексы передвижения тела в пространстве)

2. По расположению рецепторов , раздражение которых вызывает данный рефлекторный акт

А.)экстерорецептивный рефлекс - раздражение рецепторов внешней поверхноcти тела

Б.)висцеро- или интерорецептивный рефлекс - возникающий при раздражении рецепторов внутренних органов и сосудов

В.)проприорецептивный (миотатический) рефлекс - раздражение рецепторов скелетных мышц, суставов, сухожилий

3. По месту расположения нейронов, участвующих в рефлексе

А.)спинальные рефлексы - нейроны расположены в спинном мозге

Б.)бульбарные рефлексы - осуществляемые при обязательном участии нейронов продолговатого мозга

В.)мезэнцефальные рефлексы - осуществляемые при участии нейронов среднего мозга

Г.)диэнцефальные рефлексы - участвуют нейроны промежуточного мозга

Д.)кортикальные рефлексы - осуществляемые при участии нейронов коры больших полушарий головного мозга

Рефлекторная дуга - это путь, по которому раздражение (сигнал) от рецептора проходит к исполнительному органу. Структурную основу рефлекторной дуги образуют нейронные цепи, состоящие из рецепторных, вставочных и эффекторных нейронов. Именно эти нейроны и их отростки образуют путь, по которому нервные импульсы от рецептора передаются исполнительному органу при осуществлении любого рефлекса.

В периферической нервной системе различают рефлекторные дуги (нейронные цепи)

Соматической нервной системы, иннервирующие скелетную иускулатуру

Вегетативной нервной системы, иннервирующие внутренние органы: сердце, желудок, кишечник, почки, печень и т.д.

Рефлекторная дуга состоит из пяти отделов:

1.Рецепторов, воспринимающих раздражение и отвечающих на него возбуждением. Рецепторы расположены в коже, во всех внутренних органах, скопления рецепторов образуют органы чувств (глаз, ухо и т. д.).

2.Чувствительного (центростремительного, афферентного) нервного волокна, передающего возбуждение к центру; нейрон, имеющий данное волокно, также называется чувствительным. Тела чувствительных нейронов находятся за пределами центральной нервной системы - в нервных узлах вдоль спинного мозга и возле головного мозга.

3.Нервного центра, где происходит переключение возбуждения с чувствительных нейронов на двигательные; Центры большинства двигательных рефлексов находятся в спинном мозге. В головном мозге расположены центры сложных рефлексов, таких, как защитный, пищевой, ориентировочный и т. д. В нервном центре

происходит синаптическое соединение чувствительного и двигательного нейрона.

1.Двигательного (центробежного, эфферентного) нервного волокна, несущего возбуждение от центральной нервной системы к рабочему органу; Центробежное волокно - длинный отросток двигательного нейрона. Двигательным называется нейрон, отросток которого подходит к рабочему органу и передает ему сигнал из центра.

2.Эффектора - рабочего органа, который осуществляет эффект, реакцию в ответ на раздражение рецептора. Эффекторами могут быть мышцы, сокращающиеся при поступлении к ним возбуждения из центра, клетки железы, которые выделяют сок под влиянием нервного возбуждения, или другие органы.

    Понятие о нервном центре.

Нервный центр - совокупность нервных клеток, более или менее строго локализованная в нервной системе и непременно участвующая в осуществлении рефлекса, в регуляции той или иной функции организма или одной из сторон этой функции. В простейших случаях нервный центр состоит из нескольких нейронов, образующих обособленный узел (ганглий).

В каждый Н. ц. по входным каналам - соответствующим нервным волокнам - поступает в виде импульсов нервных информация от органов чувств или от др. Н. ц. Эта информация перерабатывается нейронами Н. ц., отростки (Аксоны) которых не выходят за его пределы. Конечным звеном служат нейроны, отростки которых покидают Н. ц. и доставляют его командные импульсы к периферическим органам или др. Н. ц. (выходные каналы). Нейроны, составляющие Н. ц., связаны между собой посредством возбуждающих и тормозных синапсов и образуют сложные комплексы, так называемые нейронные сети. Наряду с нейронами, которые возбуждаются только в ответ на приходящие нервные сигналы или действие разнообразных химических раздражителей, содержащихся в крови, в состав Н. ц. могут входить нейроны-ритмоводители, обладающие собственным автоматизмом; им присуща способность периодически генерировать нервные импульсы.

Локализацию Н. ц. определяют на основании опытов с раздражением, ограниченным разрушением, удалением или перерезкой тех или иных участков головного или спинного мозга. Если при раздражении данного участка центральной нервной системы возникает та или иная физиологическая реакция, а при его удалении или разрушении она исчезает, то принято считать, что здесь расположен Н. ц., влияющий на данную функцию или участвующий в определённом рефлексе.

    Свойства нервных центров.

Нервным центром (НЦ) называется совокупность нейронов в различных отделах ЦНС, обеспечивающих регуляцию какой-либо функции организма.

Для проведения возбуждения через нервные центры характерны следующие, особенности:

1. Однострочное проведение, оно идет от афферентного, через вставочный к эфферентному нейрону. Это обусловлено наличием межнейронных синапсов.

2.Центральная задержка проведения возбуждения т.е по НЦ возбуждения идет значительно медленнее, чем по нервному волокну. Это объясняется синаптической задержкой т.к больше всего синапсов в центральном звене рефлекторной дуги, там скорость проведения наименьшая. Исходя из этого, время рефлекса, это время от начала воздействия раздражителя до появления ответной реакции. Чем длительнее центральная задержка, тем больше время рефлекса. Вместе с тем оно зависит от силы раздражителя. Чем она больше, тем время рефлекса короче и наоборот. Эго объясняется явлением суммации возбуждений в синапсах. Кроме того, оно определяется и функциональным состоянием ЦНС. Например, при утомлении НЦ длительность рефлекторной реакции увеличивается.

3. Пространственная и временная суммация. Временная суммация возникает, как и в синапсах вследствие того, что чем больше поступает нервных импульсов, тем больше выделяется нейромедиатора в них, тем выше амплитуда ВПСП. Поэтому рефлекторная реакция может возникать на несколько последовательных подпороговых раздражений. Пространственная суммация наблюдается тогда, когда к нервному центру идут импульсы от нескольких рецепторов нейронов. При действии на них подпороговых стимулов, возникающие постсинаптические потенциалы суммируются 11 и мембране нейрона генерируется распространяющийся ПД.

4. Трансформация ритма возбуждения - изменение частоты нервных импульсов при прохождении через нервный центр. Частота может понижаться или повышаться. Например, повышающая трансформация (увеличение частоты) обусловлено дисперсией и мультипликацией возбуждения в нейронах. Первое явление возникает в результате разделения нервных импульсов на несколько нейронов, аксоны которых образуют затем синапсы на одном нейроне. Второе, генерацией нескольких нервных импульсов при развитии возбуждающего постсинаптического потенциала на мембране одного нейрона. Понижающая трансформация объясняется суммацией нескольких ВПСП и возникновением одного ПД в нейроне.

5. Посттетаническая потенциация, это усиление рефлекторной реакции в результате длительного возбуждения

нейронов центра. Под влиянием многих серий нервных импульсов, проходящих с большой частотой через синапсы, выделяется большое количество нейромедиатора в межнейронных синапсах. Это приводит к прогрессирующему нарастанию амплитуды возбуждающего постсинаптического потенциала и длительному (несколько часов) возбуждению нейронов.

6. Последействие - это запаздывание окончания рефлекторного ответа после прекращения действия раздражителя. Связано с циркуляцией нервных импульсов по замкнутым цепям нейронов.

7. Тонус нервных центров - состояние постоянной повышенной активности. Он обусловлен постоянным поступлением к НЦ нервных импульсов от периферических рецепторов, возбуждающим влиянием на нейроны продуктов метаболизма и других гуморальных факторов. Например, проявлением тонуса соответствующих центров является тонус определенной группы мышц.

8. автоматия или спонтанная активность нервных центров. Периодическая или постоянная генерация нейронами нервных ИМПУЛЬСОВ, которые возникают в них самопроизвольно, т.е. в отсутствии сигналов от других нейронов или рецепторов. Обусловлена колебаниями процессор метаболизма в нейронах и действием на них гуморальных факторов.

9. Пластичность нервных центров. Это их способность изменять функциональные свойства. При этом центр приобретает возможность выполнять новые функции или восстанавливать старые после повреждения. В основе пластичности Н.Ц. лежит пластичность синапсов и мембран нейронов, которые могут изменять свою молекулярную структуру.

10. Низкая физиологическая лабильность и быстрая утомляемость. Н.Ц. могут проводить импульсы лишь ограниченной частоты. Их утомление объясняется утомлением синапсов и ухудшением метаболизма нейронов.

    Торможение в ЦНС.

Торможение в ЦНС препятствует развитию возбуждения или ослабляет протекающее возбуждение. Примером торможения может быть прекращение рефлекторной реакции, на фоне - действия другого более сильного раздражителя. Первоначально была предложена унитарно-химическая теория торможения. Она основывалась на принципе Дейла: один нейрон - один медиатор. Согласно ей торможение обеспечивается теми же нейронами и синапсами, что и возбуждение. В последующем была доказана правильность бинарно-химической теории. В соответствии с последней, торможение обеспечивается специальными тормозными нейронами, которые являются вставочными. Это клетки Реншоу спинного мозга и нейроны Пуркинье промежуточного. Торможение в ЦНС необходимо для интеграции нейронов в единый нервный центр. В ЦНС выделяют следующие механизмы торможения:

1| Постсинаптическое. Оно возникает в постсинаптической мембране сомы и дендритов нейронов, т.е. после передающего синапса. На этих участках образуют аксо-дендритные или аксосоматические синапсы специализированные тормозные нейроны (рис). Эти синапсы являются глицинергическими. В результате воздействия, НЛИ на глициновые хеморецепторы постсинаптической мембраны, открываются, ее калиевые и хлорные каналы. Ионы калия и хлора входят в нейрон, развивается ТПСП. Роль ионов хлора в развитии ТПСП: небольшая. В результате возникшей гиперполяризации возбудимость нейрона падает. Проведение нервных, импульсов через него прекращается. Алкалоид стрихнин может связываться с глицериновыми рецепторами постсинаптической мембраны и выключать тормозные синапсы. Это используется для демонстрации роли торможения. После введения стрихнина у животного развиваются судороги всех мышц.

2. Пресинаптическое торможение. В этом случае тормозной нейрон образует синапс на аксоне нейрона, подходящем к передающему синапсу. Т.е. такой синапс является аксо-аксональным (рис). Медиатором этих синапсов служит ГАМК. Под действием ГАМК активируются хлорные каналы постсинаптической мембраны. Но в этом случае ионы хлора начинают выходить из аксона. Это приводит к небольшой локальной, но длительной деполяризации его мембраны.

Значительная часть натриевых каналов мембраны инактивируется, что блокирует проведение нервных импульсов по аксону, а следовательно выделение нейромедиатора в передающем синапсе. Чем ближе тормозной синапс расположен к аксонному холмику, тем сильнее его тормозной эффект. Пресинаптическое торможение наиболее эффективно при обработке информации, так как проведение возбуждения блокируется не во всем нейроне, а только на его одном входе. Другие синапсы, находящиеся на нейроне продолжают функционировать.

3. Пессимальное торможение. Обнаружено Н.Е. Введенским. Возникает при очень высокой частоте нервных импульсов. Развивается стойкая длительная деполяризация всей мембраны нейрона и инактивация ее натриевых каналов. Нейрон становится невозбудимым.

В нейроне одновременно могут возникать и тормозные и возбуждающие постсинаптические потенциалы. За счет этого и происходит выделение нужных сигналов.

    Принципы координации рефлекторных процессов.

Рефлекторная реакция в большинстве случаев осуществляется не одной, а целой группой рефлекторных ДУГ и нервных центров. Координация рефлекторной деятельности это такое взаимодействие нервных центров и проходящих по ним нервных импульсов, которое обеспечивает согласованную деятельность органов и систем организма. Она осуществляется с помощью следующих процессов:

1. Временное и пространственное облегчение. Это усиление рефлекторной реакции при действии ряда последовательных раздражителей или одновременном их воздействии на несколько рецептивных полей. Объясняется явлением суммации в нервных центрах.

2. Окклюзия явление противоположное облегчению. Когда рефлекторная реакция на два или более сверхпороговых раздражителя меньше, чем ответы на их раздельное воздействие. Оно связано с конвергенцией нескольких возбуждающих импульсов на одном нейроне.

3. Принцип общего конечного пути. Разработан Ч. Шеррингтоном. В основе его лежит явление конвергенции. Согласно этому принципу на одном эфферентном мотонейроне могут образовывать синапсы нескольких афферентных, входящих в несколько рефлекторных дуг. Этот нейрон называется общим конечным путем и участвует в нескольких рефлекторных реакциях. Если взаимодействие этих рефлексов приводит к усилению обшей рефлекторной реакции, такие рефлексы называются союзными. Если же между афферентными сигналами происходит борьба за мотонейрон - конечный путь, то антагонистическими. В результате этой борьбы второстепенные рефлексы ослабляются, а жизненно важным освобождается общий конечный путь.

4. Реципрокное торможение. Обнаружено Ч. Шеррингтоном. Это явление торможения одного Центра в результате возбуждения другого. Т.е. в этом случае тормозится антагонистический центр. Например при возбуждении центров сгибания левой ноги по реципрокному механизму тормозятся центры мышц разгибателей этой же ноги и центры сгибателей правой. В реципрокных взаимоотношениях находятся, центры вдоха и выдоха продолговатого мозга. центры сна и бодрствования и т.д.

5. Принцип доминанты. Открыт А.А. Ухтомским. Доминанта - это преобладающий очаг возбуждения в ЦНС, подчиняющий себе другие НЦ. Доминантный центр обеспечивает комплекс рефлексов, которые необходимы в данный момент для достижения определенной цели. При некоторых условиях возникают питьевая, пищевая, оборонительная, половая и др. доминанты. Свойствами доминантного очага являются повышенная возбудимость, стойкость возбуждения, высокая способность к суммации, инертность. Эти свойства обусловлены явлениями облегчения, иррадиации, с одновременным повышением активности вставочных тормозных нейронов, которые тормозят нейроны других центров.

6. Принцип обратной афферентации. Результаты рефлекторного акта воспринимаются нейронами обратной афферентации и информация от них поступает обратно в нервный центр. Там они сравниваются с параметрами возбуждения и рефлекторная реакция корректируется.

    Методы исследований функций ЦНС.

1. Метод перерезок ствола мозга на различных уровнях. Например, между продолговатым и спинным мозгом.

2. Метод экстирпации (удаления) или разрушения участков мозга.

3.Метод раздражения различных отделов и центров мозга.

4. Анатомо-клинический метод. Клинические наблюдения за изменениями функций ЦНС при поражении ее каких-либо отделов с последующим патологоанатомическим исследованием.

5. Электрофизиологические методы:

а. Электроэнцефалография - регистрация биопотенциалов мозга с поверхности кожи черепа. Методика разработана и внедрена в клинику Г.Бергером.

б. Регистрация биопотенциалов нервных различных центров, используется вместе со стереотаксической техникой, при которой электроды с помощью микроманипуляторов вводят в строго определенное ядро в метод вызванных потенциалов, регистрация электрической активности участков мозга при электрическом раздражении периферических рецепторов или других участков;

6. Метод внутримозгового введения веществ с помощью микроинофореза.

7. Хронорефлексометрия - определение времени рефлексов.

    Рефлексы спинного мозга.

Рефлекторная функция. Нервные центры спинного мозга являются сегментарными, или рабочими, центрами. Их нейроны непосредственно связаны с рецепторами и рабочими органами. Кроме спинного, мозга, такие центры имеются в продолговатом и среднем мозге. Надсегментарные центры, например промежуточного мозга, коры больших полушарий, непосредственной связи с периферией не имеют. Они управляют ею посредством сегментарных центров. Двигательные нейроны спинного мозга иннервируют все мышцы туловища, конечностей, шеи, а также дыхательные мышцы - диафрагму и межреберные мышцы.

Похожие статьи