Газообмен в легких краткое описание. Строение легких

27.06.2019

Физиология дыхания

Общая характеристика дыхательной системы

Дыхание – жизненно важная функция организма,обеспечивающая газообмен между клетками организма и внешней средой. Для осуществления энергетических процессов клетки потребляют кислород и выделяют диоксид углерода. Если эти процессы остановятся максимум на 5 минут – наступят необратимые изменения в клетках. Особенно чувствительны к недостатку кислорода клетки коры больших полушарий головного мозга и сердца.

Дыхание включает пять взаимосвязанных процессов:

1. Внешнее дыхание – обмен воздуха между внешней средой и альвеолами лёгких (осуществляется посредством актов вдоха и выдоха).

2. Газообмен в лёгких – диффузия газов между лёгочными альвеолами и кровью, в результате венозная кровь превращается в артериальную.

3. Транспорт газов (кислорода и диоксида углерода) кровью.

4. Газообмен в тканях – диффузия кислорода из капилляров большого круга кровообращения в клетки, а углекислого газа – из клеток в кровь.

5. Тканевое дыхание – окислительные процессы в клетках.

Некоторые сведения о строении органов дыхания

К органам дыхания относятся лёгкие, трахея, гортань и носовые ходы. Газообмен между кровью и воздухом происходит только в альвеолах лёгких, остальные пути называются воздухоносными. К последним относятся верхние воздухоносные пути – от носовых ходов до голосовой щели, и нижние – от голосовой щели до альвеол.

Поскольку в воздухоносных путях газообмен не происходит, их называют «вредным», или «мёртвым» пространством – по аналогии с поршневыми механизмами. Однако они имеют большое значение, так как, проходя по ним, воздух согревается, увлажняется и очищается от макро- и микрочастиц (пыли, копоти, микроорганизмов). Здесь образуется много слизи, работает мерцательный эпителий. В подслизистом слое имеется много лимфоцитов, макрофагов, эозинофилов, осуществляющих защиту организма от проникновения из внешней среды патогенной микрофлоры. Воздухоносные пути являются рецептивными зонами защитных дыхательных путей – чихания и кашля.

Лёгкие расположены в грудной полости, образованной двумя листками плевры – висцеральным и париетальным. Висцеральный листок плотно срастается с лёгкими, а также с другими органами грудной полости. Париетальный листок срастается с рёберной стенкой и диафрагмой. Между этими листками плевры находится узкая капиллярная щель, её называют межплевральной, или плевральной полостью. Она заполнена небольшим количеством серозной жидкости. Строго говоря, межплевральная щель и есть грудная полость. Давление в межплевральной полости ниже атмосферного, то есть отрицательное. Поэтому лёгкие постоянно заполнены воздухом и растянуты – как при вдохе, так и при выдохе.

Рис. 9. Строение лёгкого: 1 – трахея;

2 – правый бронх; 3 – левый бронх; 4 – альвеолы.

Внутренняя поверхность альвеол покрыта особым веществом, состоящим из фосфолипидов, белков и гликопротеидов – сурфактантом . Сурфактант уменьшает поверхностное натяжение альвеол, играет важную роль в предотвращении спадения альвеол при выдохе и облегчает их растяжение при вдохе. Кроме того, обмен газов через стенку альвеол происходит лишь при условии их растворения в сурфактанте.

Внешнее дыхание

Внешнее дыхание, или вентиляция лёгких – это газообмен между альвеолами лёгких и окружающим воздухом. Оно складывается из вдоха и выдоха. Лёгкие расширяются при вдохе и спадаются при выдохе в результате изменения давления в грудной полости.

Грудная полость – это узкая капиллярная щель между париетальным и висцеральным листками плевры, заполненная серозной жидкостью. До рождения головки рёбер зафиксированы у тел позвонков – в одной точке. Рёбра опущены, грудная клетка сжата, давление в грудной полости равно атмосферному. В момент первого вдоха новорожденного рёбра приподнимаются, и рёберные бугорки фиксируется на поперечно-остистом отростке позвонков – во второй точке фиксации. В результате объём грудной полости увеличивается, а давление в ней снижается, и становится ниже атмосферного, или отрицательным. Во время выдоха рёбра сохраняют новое положение, грудная полость остается несколько растянутой и давление в ней остается отрицательным.

Вдох

Последовательностьпроцессов при вдохе следующая:

1. Сокращается группа вдыхательных (инспираторных) мышц, основными из которых являются наружные межреберные мышцы и диафрагма. При этом органы брюшной полости, сдавленные диафрагмой, оттесняются в каудальном направлении, рёбра описывают дугу кверху, а грудная кость немного опускается.

2. Изменения положения рёберной клетки и диафрагмы приводит к увеличению объёма грудной полости.

3. Увеличение объёма грудной полости приводит к снижению в ней давления, в результате лёгкие растягиваются, пассивно следуя за изменениями объёма грудной полости

4. В альвеолах давление снижается и в них засасывается воздух.

При усиленном дыхании участвуют дополнительные респираторные мышцы, которые при сокращении ещё больше увеличивают объём грудной полости и снижают в ней давление. Поэтому вдох оказывается более глубоким, и в лёгкие входит больше воздуха.

Выдох

Выдох начинается с расслабления мышц-инспираторов, вследствие чего грудная клетка возвращается в исходное положение. Давление в грудной полости при этом повышается, не достигая, однако, атмосферного. В лёгких, однако, давление становится выше атмосферного, что приводит к вытеснению воздуха и уменьшению их объёма. Сжатию лёгких во время выдоха способствует эластическая тяга паренхимы. Включение в работу мышц-экспираторов (в основном, внутренних межреберных мышц и мышц живота) необходимо только при усиленном, форсированном дыхании.

Изменения давления в грудной (то есть плевральной) полости во время дыхания следующие:

1. При спокойном вдохе оно меньше атмосферного (то есть отрицательное) на 30 мм рт. ст., при спокойном выдохе – на 5 – 8. При очень глубоком вдохе (например, перед чиханием, или при мышечной нагрузке) – становится на 60-65 мм рт.ст.ниже атмосферного, а при полном, максимальном выдохе (в конце чихания, например), – оно на 1,5 – 2 мм ниже атмосферного.

2. При изменениях атмосферного давления в окружающей среде давление в грудной полости также изменяется, но всё равно остается отрицательным на указанные величины.

Таким образом, давление в плевральной полости всегда отрицательное . При нарушении целостности грудной полости (проникающее ранение или разрыв поверхностных альвеол) атмосферный воздух засасывается в плевральную полость. Такое состояние называется пневмотораксом. Давление в грудной полости выравнивается с атмосферным, лёгкие спадаются за счёт эластичной тяги, и дыхание становится невозможным.

Количество дыхательных движений у животных в 1 минуту – видовой признак. У лошадей в состоянии покоя оно составляет 8 – 16, у коров – 10 – 30, у свиней – 8 – 18, у собак –10 – 30, у кошек 10 – 25, у морских свинок – 100 – 150.

Вентиляция лёгких

При спокойном дыхании животные вдыхают и выдыхают сравнительно небольшое количество воздуха, именуемое дыхательным (респираторным) объёмом: у лошади и коровы он составляет – 5 – 6, у крупных собак – около 0,5 литра.

При максимальном вдохе животное может вдохнуть больше – это дополнительный объём вдоха (у крупных животных он колеблется от 10 до 12, у крупных собак – равняется 1 литру), а после спокойного выдоха – дополнительно столько же выдохнуть (резервный объём выдоха ). Сумма дыхательного, дополнительного объёма вдоха и дополнительного объёма выдоха составляет жизненную ёмкость лёгких . Дополнительные объёмы используются при усилении дыхания – например, во время физической работы.

После спокойного выдоха в лёгких ещё остается достаточно много воздуха – это альвеолярный объём . Он состоит из резервного объёма выдоха и остаточного воздуха, который выдохнуть из лёгких не представляется возможным. Это связано с тем, что и после самого глубокого выдоха в грудной полости сохраняется отрицательное давление, и легкие постоянно заполнены воздухом. Это обстоятельство даже используется в судебно-ветеринарной экспертизе в случаях, когда нужно установить, был ли плод мёртворожденным или он погиб после рождения (в первом случае – в лёгких нет воздуха, во втором – новорожденный дышал перед смертью и воздух попал в лёгкие).

Отношение дыхательного объёма к альвеолярному называется коэффициентом лёгочной (альвеолярной) вентиляции. При каждом спокойном вдохе вентилируется примерно 1/6 часть лёгочного объёма, а при усиленном дыхании этот коэффициент возрастает.

Газообмен в лёгких и тканях

Газообмен между альвеолярным воздухом и кровью, а также между кровью и тканями происходит по физическим законам, – путём простой диффузии. Газы переходят через полупроницаемые биологические мембраны вследствие разницы парциальных давлений (давление одного газа в смеси газов) из области более высокого в область более низкого давления. Для газов, растворённых в жидкости (крови) при этом употребляется термин – напряжение.

Для расчёта парциального давления газа необходимо знать его концентрацию в газовой среде и общее давление смеси газов. Так, например, содержание кислорода во вдыхаемом (атмосферном) воздухе составляет 21%, углекислого газа – 0,03%. В альвеолярном воздухе содержание газов несколько другое: соответственно – 14% и 5,5%. Важно отметить, что при спокойном дыхании состав альвеолярного воздуха остаётся постоянным и мало зависит от фазы вдоха или выдоха. Это – своеобразная внутренняя газовая среда организма, обеспечивающая непрерывное обновление газов в крови. Изменения состава альвеолярного воздуха происходит только при сильной одышке или при затруднении (остановке) дыхания.

Давление в альвеолах лёгких ниже атмосферного на величину, создаваемую водяными парами (около 47 мм. рт.ст.).

Таким образом, если внешнее атмосферное давление около 760 мм, то парциальное давление кислорода в альвеолах составляет около 100, а диоксида углерода – 40 мм рт.ст. При изменениях погодных условий, а также в условиях высокогорья, или при погружении в воду парциальное давление газов в альвеолах изменится.

В венозной крови, притекающей к лёгким по лёгочной артерии, напряжение кислорода составляет около 40 мм рт.ст., а диоксида углерода – 46 мм. рт.ст. Следовательно, кислород диффундирует из альвеолярного воздуха в кровь, а диоксид углерода – из крови в альвеолярный воздух.

Азота в воздухе около 80%, он содержится и в альвеолярном воздухе, его парциальное давление больше всех других газов. Однако при обычных колебаниях атмосферного давления азот не растворяется ни в водяных парах альвеол, ни в сурфактанте, поэтому в кровь он не попадает.

К органам подходит артериальная кровь, насыщенная кислородом. Его напряжение составляет около 100 мм рт.ст. Диоксид углерода также содержится в артериальной крови, его напряжение – около 40 мм рт.ст. В клетках содержание диоксида углерода значительно больше, его напряжение доходит до 70 мм рт.ст. Кислород клетки поглощают и используют для окислительных процессов, поэтому его напряжение снижается почти до 0. Таким образом, между притекающей артериальной кровью и тканями органов происходит простая диффузия газов – кислород из крови переходит в ткани, а диоксид углерода – из тканей в кровь.

Транспорт газов кровью

Только небольшая часть кислорода может транспортироваться кровью в растворенном состоянии (0,3 мл газа в 100 мл крови).

Основной транспортной формой кислорода в крови является оксигемоглобин (14 – 20 млв 100 мл крови). Он образуется в результате присоединения к гемоглобину крови кислорода. Установлено, что 1 г гемоглобина (при условии полного его насыщения) может присоединить около 1,34 мл кислорода.

Кислородная ёмкость крови определяется количеством мл кислорода, находящегося в 100 мл крови при максимальном насыщения гемоглобина кислородом. Она зависит от количества гемоглобина в крови. При значительных изменениях атмосферного давления, или же при экстремальных колебаниях газового состава воздуха кислородная ёмкость крови может изменяться.

Транспорт углекислого газа кровью осуществляется в 3-х формах: в виде бикарбонатов натрия и калия (основная форма), в соединении с гемоглобином (карбогемоглобин) и в растворённом состоянии: соответственно доля каждой из форм в процентах составляет – 80, 18 и 2%.

Механизм образования бикарбонатов следующий. Поступающий из тканей в кровь углекислый газ проникает в эритроциты и при участии клеточного фермента карбоангидразы преобразуется в угольную кислоту. Н 2 СО 3 легко диссоциирует с образованием ионов Н + и НСО 3 - . НСО 3 - диффундирует из эритроцитов в плазму крови, взамен в эритроциты из плазмы входят ионы хлора. В результате в плазме крови ионы натрия и калия связывают поступающие из эритроцитов НСО 3 - , образуя бикарбонаты натрия или калия.

Регуляции дыхания

Регуляции дыхания осуществляется рефлекторно, при участии нейро-гуморальных механизмов. В рефлекторной регуляции любой функции участвует нервный центр, получающий информацию от различных рецепторов, и исполнительные органы.

Дыхательный центр представляет совокупность нейронов в различных отделах ЦНС, структурно и функционально связанных между собой. «Ядро» дыхательного центра, находится в области ретикулярной формации продолговатого мозга. Оно состоит из двух отделов: центров вдоха и выдоха. При повреждении этой области мозга дыхание становится невозможным и наступает смерть животного.

Нейроны, входящие в состав вышеназванного ядра, обладают автоматией, т.е. способны к спонтанной (самопроизвольной) деполяризации – возникновению возбуждения. Автоматия той части дыхательного центра, которая расположена в продолговатом мозге, имеет важное значение в автоматическом чередовании вдоха и выдоха. Другие структуры дыхательного центра автоматией не обладают. В продолговатом мозге также замыкаются рефлекторные дуги чихательного и кашлевого рефлексов. При участии данного отдела изменяется внешнее дыхание при изменении газового состава крови.

Из продолговатого мозга импульсы спускаются в спинной мозг. В грудном отделе спинного мозга находятся мотонейроны, иннервирующие межрёберные (дыхательные) мышцы, а в шейной области спинного мозга на уровне 3 – 5-го позвонка расположен центр диафрагмального нерва. Эти нейроны передают возбуждение от центров вдоха и выдоха продолговатого мозга к мышцам, они относятся к соматической нервной системе.

В состав основного дыхательного центра также входят нейроны среднего и промежуточного отдела головного мозга, которые координируют дыхание с другими функциями организма (мышечными сокращениями, глотанием, отрыгиванием, принюхиванием). Кора больших полушарий является высшей инстанцией данного центра, контролирующей работу всех ранее перечисленных структурных образований и обеспечивающей произвольное усиление или урежение дыхания. При обязательном участии коры возникают условнорефлекторные изменения дыхания.

В регуляции дыхания участвуют различные рецепторы – они расположены в лёгких, в кровеносных сосудах, в скелетных мышцах. По природе раздражителей они могут быть механо- и хеморецепторами.

К лёгочным рецепторам относятся рецепторы растяжения и ирритантные рецепторы.

Рецепторы растяжения возбуждаются вследствие растяжения лёгких во время вдоха. Возникший в них поток импульсов устремляется по веточкам блуждающего нерва в центр вдоха, и на высоте вдоха вызывает его торможение. Благодаря этому вдох заканчивается ещё до максимального растяжения лёгких. Спадение лёгких при выдохе также сопровождается раздражением механорецепторов, что приводит к торможению выдоха. Таким образом, механорецепторы лёгких передают информацию в дыхательный центр о степени растяжения или спадения лёгких, что регулирует глубину дыхания и необходимо для автоматического чередования вдоха и выдоха.

Ирритантныерецепторы располагаются в эпителиальном слое воздухоносных дыхательных путей и лёгких. Они реагируют на пыль, действие неприятных или удушающих газов, табачного дыма. При этом возникает чувство першения в горле, кашель, задержка дыхания. Значение этих рефлексов – недопущение в альвеолы вредных газов и пылевых

Хеморецепторы расположены в различных кровеносных сосудах, в тканях и в ЦНС. Они чувствительны к концентрации кислорода, диоксида углерода, водородным ионам. Важнейшим гуморальным раздражителем для дыхательного центра является диоксид углерода. Изменение его концентрации в артериальной крови неизменно ведет к изменению частоты и глубины дыхания: увеличение – к усилению, уменьшение – к ослаблению дыхательной функции. Большое значение в гуморальной регуляции дыхания имеют хеморецепторы синокаротидной и аортальной сосудистых рефлексогенных зон. Очень высока чувствительность к диоксиду углерода нейронов дыхательного центра, расположенных в продолговатом мозге. Таким образом, в организме поддерживается постоянный уровень диоксида углерода и в крови, и в ликворе.

Другим адекватным раздражителем дыхательного центра являетсякислород. Правда, его влияние проявляется в меньшей мере. Это связано с тем, что при обычных колебаниях атмосферного давления у здоровых животных практически весь гемоглобин соединяется с кислородом.

Гуморальная регуляция дыхания имеет важное значение при первом вдохе новорожденного. Во время родов при передавливании пуповины в организме детёныша быстро нарастает концентрация углекислого газа и одновременно развивается кислородная недостаточность. Это приводит к рефлекторному возбуждению дыхательного центра и новорожденный делает свой первый в его жизни вдох.

Активное участие в механизме регуляции дыхания принимают органические кислоты, в частности – молочная кислота, накапливающаяся в крови и в мышцах во время мышечной работы. Эта кислота, являясь более сильной, чем угольная, вытесняет из бикарбонатов крови диоксид углерода, что приводит к повышению возбудимости дыхательного центра и возникновению одышки.

О характере газообмена в легких можно судить, если сравнить состав воздуха, который мы вдыхаем и выдыхаем. Мы вдыхаем атмосферный воздух, содержащий около 21% кислорода, 0,03% углекислого газа, остальное — азот и небольшое количество инертных газов и водяного пара.

Газообмен

В составе выдыхаемого воздуха кислорода около 16%, углекислого газа — около 4%. Итак, в легких богатый на кислород атмосферный воздух, поступивший во время вдоха, заменяется на воздух, в котором содержание кислорода в 1,3 раза меньше, а содержание углекислого газа больше аж в 133 раза. Организм человека в состоянии покоя ежеминутно получает 250-300 мл кислорода и выделяет 250-300 мл углекислого газа. Каков механизм газообмена?

советует похожие рефераты:

Газообмен в легких

Кислород и углекислый газ свободно диффундируют через мембраны клеток стенок альвеол и капилляров. Суть этого физического процесса заключается в том, что молекулы любого вещества, соответственно, и газа, перемещаются с участка, где их концентрация выше, к участку, где их концентрация меньше. Это перемещение продолжается, пока концентрация вещества в обоих участках не станет одинаковой.

Вспомним: в капилляры легких поступает венозная кровь, обогащенная углекислым газом, попавшим в нее из межклеточной жидкости, и бедная кислородом. Концентрация кислорода в альвеолярном воздухе выше, чем в венозной крови, поэтому кислород перемещается сквозь стенки альвеол и капилляров в кровь. В крови молекулы кислорода соединяются с гемоглобином эритроцитов, образуя оксигемоглобин.

Концентрация углекислого газа в альвеолах ниже, чем в венозной крови. Поэтому он диффундирует из капилляров в альвеолы, а оттуда во время выдоха удаляется наружу.

При газообмене в легких венозная кровь превращается в артериальную: содержание кислорода в ней меняется с 140-160 мл / л до 200 мг / л, а содержание углекислого газа — с 580 мл / л до 560-540 мл / л.

Легкие является органом выделения — через них удаляются летучие вредные вещества. К альвеолям из венозной крови поступают молекулы некоторых вредных веществ, попавших в организм человека (алкоголь, эфир), или образовавшиеся в нем (например ацетон). Из альвеол они проникают в выдыхаемого.

Газообмен в тканях

В тканевой жидкости содержание кислорода ниже, чем в артериальной крови, поэтому кислород из капилляров поступает в тканевую жидкость. Из нее он диффундирует в клетки, где сразу вступает в реакции энергетического обмена, поэтому в клетках свободного кислорода почти нет.

В реакциях энергетического обмена образуется углекислый газ. Его концентрация в клетках становится выше, чем в тканевой жидкости, и газ диффундирует в нее, а затем — к капиллярам. У них одна часть молекул углекислого газа растворяется в плазме крови, а другая попадает в эритроцит.

По сосудам большого круга кровообращения венозная кровь, бедная кислородом и обогащенная углекислым газом, системой полых вен поступает к правому предсердию и правому желудочку. Оттуда она попадает в легкие, где снова происходит газообмен.

Производя попеременно вдох и выдох, человек вентилирует легкие, поддерживая в альвеолах относительно постоянный газовый состав. Человек дышит атмосферным воздухом с большим содержанием кислорода (20,9%) и низким содержанием углекислого газа (0,03%), а выдыхает воздух, в котором количество кислорода снижается, а углекислого газа - увеличивается. Рассмотрим процесс газообмена в легких и тканях человека.

Состав альвеолярного воздуха отличается от вдыхаемого и выдыхаемого. Это объясняется тем, что при вдохе в альвеолы поступает воздух воздухоносных путей (т.е. выдыхаемый), а при выдохе, наоборот, к выдыхаемому (альвеолярному) примешивается атмосферный воздух, находящийся в тех же воздухоносных путях (объем мертвого пространства).

В легких кислород из альвеолярного воздуха переходит в кровь, а углекислый газ из крови поступает в легкие путем диффузии через стенки альвеол и кровеносных капилляров. Общая толщина их составляет около 0,4мкм. Направление и скорость диффузии определяются парциальным давлением газа, или его напряжением.

Парциальное давление и напряжение - по сути синонимы, но о парциальном давлении говорят, если данный газ находится в газовой среде, а о напряжении, если он растворен в жидкости. Парциальным давлением газа называют ту часть общего давления газовой смеси, которая приходится на данный газ.

Разность между напряжением газов в венозной крови и их парциальным давлением в альвеолярном воздухе составляет для кислорода около 70 мм рт. ст., а для углекислого газа - 7 мм рт. ст.

Экспериментальным путем установлено, что при разнице напряжения кислорода в 1 мм рт. ст. у взрослого человека, находящегося в покое, в кровь может поступать 25-60 см 3 кислорода в минуту. Человеку в покое нужно примерно 25-30 см 3 кислорода в минуту. Следовательно, разность движений кислорода в 70 мм рт. ст. достаточна для обеспечения организма кислородом при разных условиях его деятельности: при физической работе, спортивных упражнениях и др.

Скорость диффузии углекислого газа из крови в 25 раз больше, чем кислорода, поэтому за счет разности в 7 мм рт. ст. углекислый газ успевает выделиться из крови.

Переносит кислород от легких к тканям и углекислый газ от тканей к легким - кровь. В крови, как и во всякой жидкости, газы могут находиться в двух состояниях: в физически растворенном и в химически связанном. И кислород, и углекислый газ в очень небольшом количестве растворяются в плазме крови. Основные количества кислорода и углекислого газа переносятся в химически связанном виде. Основной переносчик кислорода - гемоглобин крови, каждый грамм которого связывает 1,34 см 3 кислорода.

Углекислый газ переносится кровью в основном в виде химических соединений - бикарбонатов натрия и калия, но часть его переносится и в связанном с гемоглобином состоянии.

Обогащенная кислородом в легких кровь по большому кругу разносится ко всем тканям организма, где происходит диффузия в ткани в силу разности его напряжения в крови и тканях. В клетках тканей кислород используется в биохимических процессах тканевого (клеточного) дыхания - процессы окисления углеводов, жиров.

Количество потребляемого кислорода и выделяемого углекислого газа изменяются у одного и того же человека. Зависит оно не только от состояния здоровья, но и от физической активности, питания, возраста, пола, температуры среды, массы и площади поверхности тела и др.

Например, на холоде газообмен усиливается, чем поддерживается постоянство температуры тела. По состоянию газообмена судят о здоровье человека. Для этого разработаны специальные методы исследований, основанные на анализе состава вдыхаемого и собранного выдыхаемого воздуха.

Легкие – самый объемный внутренний орган нашего организма. Они чем-то очень похожи на дерево (этот отдел так и называется − бронхиальное дерево), увешанное пузырьками-плодиками (). Известно, что легкие содержат почти 700 млн. альвеол. И это функционально оправдано – именно они выполняют главную роль в воздухообмене. Стенки альвеол настолько эластичны, что могут растягиваться в несколько раз при вдохе. Если сравнить площадь поверхности альвеол и кожи, то открывается удивительный факт: несмотря на кажущуюся компактность, альвеолы в десятки раз превышают по площади кожные покровы.

Легкие – великие труженики нашего организма. Они находятся в постоянном движении, то сокращаясь, то растягиваясь. Это происходит днем и ночью против нашего желания. Однако, совсем автоматическим этот процесс назвать нельзя. Он скорее полуавтоматический. Мы ведь можем сознательно задержать дыхание или форсировать его. Дыхание – одна из самых необходимых функций организма. Нелишне будет напомнить, что воздух − это смесь газов: кислорода (21%), азота (около 78%), углекислого газа (около 0,03%). Кроме этого, в нем присутствуют инертные газы и водяные пары.

С уроков биологии многие наверняка помнят опыт с известковой водой. Если выдохнуть через трубочку в прозрачную известковую воду − она помутнеет. Это является неопровержимым доказательством, что в воздухе после выдоха углекислого газа содержится гораздо больше: около 4%. Количество кислорода при этом, наоборот, уменьшается и составляет 14%.

Что управляет легкими или механизм дыхания

Механизм газообмена в легких − весьма интересный процесс. Сами по себе легкие не растянутся и не сожмутся без работы мышц. В легочном дыхании участвуют межреберные мышцы и диафрагма (специальная плоская мышца на границе грудной и брюшной полостей). Когда сокращается диафрагма, в легких понижается давление, и воздух, естественно, устремляется в орган. Выдох происходит пассивно: эластичные легкие сами выталкивают воздух наружу. Хотя иногда мышцы могут сокращаться и при выдохе. Так происходит при активном дыхании.

Весь процесс находится под контролем головного мозга. В продолговатом мозге есть специальный центр регуляции дыхания. Реагирует он на наличие углекислого газа в крови. Как только его становится меньше, центр по нервным путям посылает сигнал диафрагме. Происходит процесс ее сокращения, и наступает вдох. При повреждении дыхательного центра больному вентилируют легкие искусственным путем.

Как в легких происходит обмен газов?

Главная задача легких не просто перегонять воздух, а осуществлять процесс газообмена. В легких меняется состав вдыхаемого воздуха. И здесь основная роль принадлежит кровеносной системе. Что же представляет собой кровеносная система нашего организма? Ее можно представить большой рекой с притоками из маленьких речушек, в которые впадают ручейки. Вот такими ручейками-капиллярами пронизаны все альвеолы.

Кислород, поступивший в альвеолы, проникает в стенки капилляров. Это происходит потому, что в крови и воздухе, содержащимся в альвеолах, давление разное. Венозная кровь имеет меньшее давление, чем воздух альвеол. Поэтому кислород из альвеол устремляется в капилляры. Давление же углекислого газа меньше в альвеолах, чем в крови. По этой причине из венозной крови углекислый газ направляется в просвет альвеол.

В крови имеются специальные клетки – эритроциты, содержащие белок гемоглобин. Кислород присоединяется к гемоглобину и путешествует в таком виде по организму. Кровь, обогащенная кислородом, называется артериальной.

Дальше кровь переносится к сердцу. Сердце − еще один наш неутомимый труженик − перегоняет кровь, обогащенную кислородом, к клеткам тканей. И далее по «реченькам-ручейкам» кровь вместе с кислородом доставляется ко всем клеткам организма. В клетках она отдает кислород, забирает углекислый газ – продукт жизнедеятельности. И начинается обратный процесс: тканевые капилляры – вены – сердце – легкие. В легких обогащенная углекислым газом кровь (венозная) поступает опять в альвеолы и вместе с остатками воздуха выталкивается наружу. Углекислый газ, также как и кислород, переносится с помощью гемоглобина.

Итак, в альвеолах происходит двойной газообмен. Весь этот процесс осуществляется молниеносно, благодаря большой площади поверхности альвеол.

Недыхательные функции легких

Значение легких определяется не только дыханием. К дополнительным функциям этого органа можно отнести:

  • защита механическая: в альвеолы поступает стерильный воздух;
  • защита иммунная: в крови содержатся антитела к различным патогенным факторам;
  • очистительная: кровь выводит газообразные токсические вещества из организма;
  • поддержка кислотно-щелочного равновесия крови;
  • очищение крови от мелких тромбов.

Но какими бы ни казались они важными, все-таки основная работа легких – дыхание.

Дыхание является одной из жизненно важных функций организма, направленной на поддержание оптимального уровня окислительно-восстановительных процессов в клетках. Дыхание является сложным физиологическим процессом, который обеспечивает доставку кислорода тканям, использование его клетками в процессе метаболизма и удаление образовавшегося углекислого газа.

Весь процесс дыхания можно разделить на три этапа : внешнее дыхание, транспорт газов кровью и тканевое дыхание.

Внешнее дыхание — это газообмен между организмом и окружающим его воздухом, т.е. атмосферой. Внешнее дыхание в свою очередь можно разделить на два этапа: обмен газов между атмосферным и альвеолярным воздухом; газообмен между кровью легочных капилляров и альвеолярным воздухом.

Транспорт газов . Кислород и углекислый газ в свободном растворенном состоянии переносятся в относительно незначительных количествах, основной объем этих газов транспортируется в связанном состоянии. Основным переносчиком кислорода является гемоглобин. С помощью гемоглобина транспортируется также до 20% углекислого газа. Остальная часть углекислого газа переносится в виде бикарбонатов плазмы крови.

Внутреннее или тканевое дыхание . Этот этап дыхания можно разделить на два: обмен газов между кровью и тканями и потребление клетками кислорода и выделение углекислого газа как продукта диссимиляции.

Кровь, которая течет к легким от сердца (венозная), содержит мало кислорода и много углекислого газа; воздух в альвеолах, наоборот, содержит много кислорода и меньше углекислого газа. Вследствие этого через стенки альвеол и капилляров происходит двусторонняя диффузия -. кислород переходит в кровь, а углекислый газ поступает из крови в альвеолы. В крови кислород проникает в эритроциты и соединяется с гемоглобином. Кровь, насыщенная кислородом, становится артериальной и по легочным венам поступает в левое предсердие.

У человека обмен газами завершается в несколько секунд, пока кровь проходит через альвеолы легких. Это возможно благодаря огромной поверхности легких, сообщающейся с внешней средой. Общая поверхность альвеол составляет свыше 90 м 3 .

Обмен газов в тканях осуществляется в капиллярах. Через их тонкие стенки кислород поступает из крови в тканевую жидкость и затем в клетки, а углекислота из тканей переходит в кровь. Концентрация кислорода в крови больше, чем в клетках, поэтому он легко диффундирует в них.

Концентрация углекислого газа в тканях, где он собирается, выше, чем в крови. Поэтому он переходит в кровь, где связывается химическими соединениями плазмы и отчасти с гемоглобином, транспортируется кровью в легкие и выделяется в атмосферу.

Похожие статьи