Что значит основный оксид. Оксиды

30.09.2019

Оксиды - это вещества, в которых молекулы состоят из атома кислорода со степенью окисления - 2 и атомов какого-либо второго элемента.

Оксиды образуются прямым путем при взаимодействии кислорода с другим веществом или косвенным путем - при разложении оснований, солей, кислот. Такой тип соединений очень распространен в природе, и может существовать в виде газа, жидкости или В земной коре также находятся оксиды. Так, песок, ржавчина, и даже привычная вода - это все

Бывают как солеобразующие, так и несолеобразующие оксиды. Солеобразующие в результате химической реакции дают соли. К ним относятся оксиды неметаллов и металлов, которые в реакции с водой образуют кислоту, а в реакции с основанием - соли, нормальные и кислые. К солеобразующим относится, например,

Соответственно, из несолеобразующих получить соль невозможно. В качестве примера можно привести оксид диазота и

Солеобразующие оксиды делятся, в свою очередь, на основные, кислотные и амфотерные. Поговорим подробней об основных.

Итак, основные оксиды - это оксиды некоторых металлов, соответствующие которым гидроксиды относятся к классу оснований. То есть при взаимодействии с кислотой такие вещества образуют воду и соль. Например, это К2О, СаО, MgO и пр. В обычных условиях основные оксиды представляют собой твердые кристаллические образования. Степень оксиления металлов в таких соединениях, как правило, не превышает +2 или редко +3.

Химические свойства основных оксидов

1. Реакция с кислотой

Именно в реакции с кислотой оксид проявляет свои основные свойства, поэтому подобным экспериментом можно доказать тип того или иного оксида. Если образовались соль и вода - значит, это основной оксид. Кислотные оксиды в подобном взаимодействии образуют кислоту. А амфотерные могут проявлять либо кислотные, либо основные свойства - это зависит от условий. Таковы основные отличия несолеобразующих оксидов между собой.

2. Реакция с водой

Во взаимодействие с водой вступают те оксиды, которые образованы металлами из электротехнического ряда напряжения, стоящими перед магнием. При реакции с водой они образуют растворимые основания. Это группа оксидов щелочноземельных и (оксид бария, оксид лития и пр.). Кислотные оксиды в воде образуют кислоту, а амфотерные на воду не реагируют.

3. Реакция с амфотерными и кислотными оксидами

Противоположные по своему химическому вступают в реакцию между собой, образуя при этом соли. Так, например, основные оксиды могут вступать во взаимодействие с кислотными, но не реагируют на других представителей своей группы. Наиболее активными являются оксиды щелочных металлов, щелочноземельных и магния. Даже в обычных условиях они сплавляются с твердыми амфотерными оксидами, с твердыми и газообразными кислотными. При реакции с кислотными оксидами они образуют соответствующие соли.

Но основные оксиды других металлов менее активны и практически не вступают в реакцию с оксидами газообразными (кислотными). Они только могут вступить в реакцию присоединения при сплавлении с твердыми кислотными оксидами.

4. Окислительно-восстановительные свойства

Оксиды активных щелочных металлов не проявляют выраженных восстановительных или окислительных свойств. И, напротив, оксиды не настолько активных металлов могут восстанавливаться углем, водородом, аммиаком или угарным газом.

Получение основных оксидов

1. Разложение гидроксидов: при нагревании нерастворимые основания разлагаются на воду и основной оксид.

2. Окисление металлов: щелочной металл при горении в кислороде образует пероксид, который потом при восстановлении образует основной оксид.

Вы можете приобрести видеоурок (запись вебинара, 1,5 часа) и комплект теории по теме «Оксиды: получение и химические свойства». Стоимость материалов — 500 рублей. Оплата через систему Яндекс.Деньги (Visa, Mastercard, МИР, Maestro) по ссылке .

Внимание! После оплаты необходимо прислать сообщение с пометкой «Оксиды» с указанием адреса электронной почты, на которую можно выслать ссылку для скачивания и просмотра вебинара. В течение суток после оплаты заказа и получения сообщения материалы вебинара поступят на вашу почту. Сообщение можно прислать одним из следующих способов:

  • через смс, Viber или whatsapp на номер +7-977-834-56-28;
  • через e-mail: [email protected]

Без сообщения мы не сможем идентифицировать платеж и отправить Вам материалы.

Химические свойства основных оксидов

Подробно про оксиды, их классификацию и способы получения можно прочитать .

1. Взаимодействие с водой. С водой способны реагировать только основные оксиды, которым соответствуют растворимые гидроксиды (щелочи). Щелочи образуют щелочные металлы (литий, натрий, калий, рубидий и цезий) и щелочно-земельные (кальций, стронций, барий). Оксиды остальных металлов с водой химически не реагируют. Оксид магния реагирует с водой при кипячении.

CaO + H 2 O → Ca(OH) 2

CuO + H 2 O ≠

2. Взаимодействие с кислотными оксидами и кислотами. При взаимодействии основным оксидов с кислотами образуется соль этой кислоты и вода. При взаимодействии основного оксида и кислотного образуется соль:

основный оксид + кислота = соль + вода

основный оксид + кислотный оксид = соль

При взаимодействии основных оксидов с кислотами и их оксидами работает правило:

Хотя бы одному из реагентов должен соответствовать сильный гидроксид (щелочь или сильная кислота) .

Иными словами, основные оксиды, которым соответствуют щелочи, реагируют со всеми кислотными оксидами и их кислотами. Основные оксиды, которым соответствуют нерастворимые гидроксиды, реагируют только с сильными кислотами и их оксидами (N 2 O 5 , NO 2 , SO 3 и т.д.).

3. Взаимодействие с амфотерными оксидами и гидроксидами.

При взаимодействии основных оксидов с амфотерными образуются соли:

основный оксид + амфотерный оксид = соль

С амфотерными оксидами при сплавлении взаимодействуют только основные оксиды, которым соответствуют щелочи . При этом образуется соль. Металл в соли берется из более основного оксида, кислотный остаток — из более кислотного. В данном случае амфотерный оксид образует кислотный остаток.

K 2 O + Al 2 O 3 → 2KAlO 2

CuO + Al 2 O 3 ≠ (реакция не идет, т.к. Cu(OH) 2 — нерастворимый гидроксид)

(чтобы определить кислотный остаток, к формуле амфотерного или кислотного оксида добавляем молекулу воды: Al 2 O 3 + H 2 O = H 2 Al 2 O 4 и делим получившиеся индексы пополам, если степень окисления элемента нечетная: HAlO 2 . Получается алюминат-ион AlO 2 — . Заряд иона легко определить по числу присоединенных атомов водорода — если атом водорода 1, то заряд аниона будет -1, если 2 водорода, то -2 и т.д.).

Амфотерные гидроксиды при нагревании разлагаются, поэтому реагировать с основными оксидами фактически не могут.

4. Взаимодействие основных оксидов с восстановителями.

Таким образом, ионы некоторых металлов — окислители (чем правее в ряду напряжений, тем сильнее). При взаимодействии с восстановителями металлы переходят в степень окисления 0.

4.1. Восстановление углем или угарным газом .

Углерод (уголь) восстанавливает из оксидов только металлы, расположенные в ряду активности после алюминия. Реакция протекает только при нагревании.

FeO + C → Fe + CO

Угарный газ также восстанавливает из оксидов только металлы, расположенные после алюминия в электрохимическом ряду:

Fe 2 O 3 + CO → Al 2 O 3 + CO 2

CuO + CO → Cu + CO 2

4.2. Восстановление водородом .

Водород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия. Реакция с водородом протекает только в жестких условиях – под давлением и при нагревании.

CuO + H 2 → Cu + H 2 O

4.3. Восстановление более активными металлами (в расплаве или растворе, в зависимости от металла)

При этом более активные металлы вытесняют менее активные. То есть добавляемый к оксиду металл должен быть расположен левее в ряду активности, чем металл из оксида. Реакции, как правило, протекают при нагревании.

Например , оксид цинка взаимодействует с алюминием:

3ZnO + 2Al → Al 2 O 3 + 3Zn

но не взаимодействует с медью:

ZnO + Cu ≠

Восстановление металлов из оксидов с помощью других металлов — это очень распространенный процесс. Часто для восстановления металлов применяют алюминий и магний. А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.

Например , цезий взрывается на воздухе .

Алюмотермия – это восстановление металлов из оксидов алюминием.

Например : алюминий восстанавливает оксид меди (II) из оксида:

3CuO + 2Al → Al 2 O 3 + 3Cu

Магниетермия – это восстановление металлов из оксидов магнием.

CuO + H 2 → Cu + H 2 O

4.4. Восстановление аммиаком.

Аммиаком можно восстанавливать только оксиды неактивных металлов. Реакция протекает только при высокой температуре.

Например , аммиак восстанавливает оксид меди (II):

3CuO + 2NH 3 → 3Cu + 3H 2 O + N 2

5. Взаимодействие основных оксидов с окислителями .

Под действием окислителей некоторые основные оксиды (в которых металлы могут повышать степень окисления, например Fe 2+ , Cr 2+ , Mn 2+ и др.) могут выступать в качестве восстановителей.

Например , оксид железа (II) можно окислить кислородом до оксида железа (III):

4FeO + O 2 → 2Fe 2 O 3

1. Металл + Неметалл. В данное взаимодействие не вступают инертные газы. Чем выше электроотрицательность неметалла, тем с большим числом металлов он будет реагировать. Например, фтор реагирует со всеми металлами, а водород – только с активными. Чем левее в ряду активности металлов находится металл, тем с большим числом неметаллов он может реагировать. Например, золото реагирует только с фтором, литий – со всеми неметаллами.

2. Неметалл + неметалл. При этом более электроотрицательный неметалл выступает окислителем, менее ЭО – восстановителем. Неметаллы с близкой электроотрицательностью плохо взаимодействуют между собой, например, взаимодействие фосфора с водородом и кремния с водородом практически не возможно, так как равновесие этих реакций смещено в сторону образования простых веществ. Не реагируют с неметаллами гелий, неон и аргон, остальные инертные газы в жестких условиях могут реагировать с фтором.
Не взаимодействуют кислород с хлором, бромом и йодом. Со фтором кислород может реагировать при низких температурах.

3. Металл + кислотный оксид. Металл восстанавливает неметалл из оксида. После этого избыток металла может реагировать с получившимся неметаллом. Например:

2 Mg + SiO 2 = 2 MgO + Si (при недостатке магния)

2 Mg + SiO 2 = 2 MgO + Mg 2 Si (при избытке магния)

4. Металл + кислота. Металлы, стоящие в ряду напряжений левее водорода, реагируют с кислотами с выделением водорода.

Исключение составляют кислоты – окислители (серная концентрированная и любая азотная), которые могут реагировать с металлами, стоящими в ряду напряжений правее водорода, в реакциях не выделяется водород, а получается вода и продукт восстановления кислоты.

Нужно обратить внимание на то, что при взаимодействии металла с избытком многоосновной кислоты может получиться кислая соль: Mg +2 H 3 PO 4 = Mg (H 2 PO 4 ) 2 + H 2 .

Если продуктом взаимодействия кислоты и металла является нерастворимая соль, то металл пассивируется, так как поверхность металла защищается нерастворимой солью от действия кислоты. Например, действие разбавленной серной кислоты на свинец, барий или кальций.

5. Металл + соль. В растворе в данную реакцию вступают металл, стоящий в ряду напряжений правее магния, включая сам магний, но левее металла соли. Если металл активнее магния, то он реагирует не с солью, а с водой с образованием щелочи, которая в дальнейшем реагирует с солью. При этом исходная соль и получающаяся соль должны быть растворимыми. Нерастворимый продукт пассивирует металл.

Однако, из этого правила бывают исключения:

2FeCl 3 + Cu = CuCl 2 + 2FeCl 2 ;

2FeCl 3 + Fe = 3FeCl 2 . Так как железо имеет промежуточную степень окисления, то его соль в высшей степени окисления легко восстанавливается до соли в промежуточной степени окисления, окисляя даже менее активные металлы.

В расплавах ряд напряжений металлов не действует. Определить, возможна ли реакция между солью и металлом, можно только с помощью термодинамических расчетов. Например, натрий может вытеснить калий из расплава хлорида калия, так как калий более летучий: Na + KCl = NaCl + K (эту реакцию определяет энтропийный фактор). С другой стороны алюминий получали вытеснением из хлорида натрием: 3 Na + AlCl 3 = 3 NaCl + Al . Этот процесс экзотермический, его определяет энтальпийный фактор.

Возможен вариант, что соль при нагревании разлагается, и продукты ее разложения могут реагировать с металлом, например нитрат алюминия и железо. Нитрат алюминия разлагается при нагревании на оксид алюминия, оксид азота (IV ) и кислород, кислород и оксид азота будут окислять железо:

10Fe + 2Al(NO 3) 3 = 5Fe 2 O 3 + Al 2 O 3 + 3N 2

6. Металл + основный оксид. Также, как и в расплавах солей, возможность этих реакций определяется термодинамически. В качестве восстановителей часто используют алюминий, магний и натрий. Например: 8 Al + 3 Fe 3 O 4 = 4 Al 2 O 3 + 9 Fe реакция экзотермическая, энтальпийный фактор);2 Al + 3 Rb 2 O = 6 Rb + Al 2 O 3 (рубидий летучий, энтальпийный фактор).

8. Неметалл + основание. Как правило, реакция идет между неметаллом и щелочью.Не все неметаллы могут реагировать с щелочами: нужно помнить, что в это взаимодействие вступают галогены (по-разному в зависимости от температуры), сера (при нагревании), кремний, фосфор.

KOH + Cl 2 = KClO + KCl + H 2 O (на холоде)

6 KOH + 3 Cl 2 = KClO 3 + 5 KCl + 3 H 2 O (в горячем растворе)

6KOH + 3S = K 2 SO 3 + 2K 2 S + 3H 2 O

2KOH + Si + H 2 O = K 2 SiO 3 + 2H 2

3KOH + 4P + 3H 2 O = PH 3 + 3KPH 2 O 2

1) неметалл – восстановитель (водород, углерод):

СО 2 + С = 2СО;

2NO 2 + 4H 2 = 4H 2 O + N 2 ;

SiO 2 + C = CO 2 + Si. Если получившийся неметалл может реагировать с металлом, использованным в качестве восстановителя, то реакция пойдет дальше (при избытке углерода) SiO 2 + 2 C = CO 2 + Si С

2) неметалл – окислитель (кислород, озон, галогены):

2С O + O 2 = 2СО 2 .

С O + Cl 2 = СО Cl 2 .

2 NO + O 2 = 2 N О 2 .

10. Кислотный оксид + основный оксид . Реакция идёт, если получающаяся соль в принципе существует. Например, оксид алюминия может реагировать с серным ангидридом с образованием сульфата алюминия, но не может реагировать с углекислым газом, так как соответствующей соли не существует.

11. Вода + основный оксид . Реакция возможна, если образуется щелочь, то есть растворимое основание (или мало растворимое, в случае кальция). Если основание нерастворимое или мало растворимое, то идёт обратная реакция разложения основания на оксид и воду.

12. Основный оксид + кислота . Реакция возможна, если образующаяся соль существует. Если получающаяся соль нерастворима, то реакция может пассивироваться из-за перекрытия доступа кислоты к поверхности оксида. В случае избытка многоосновной кислоты возможно образование кислой соли.

13. Кислотный оксид + основание . Как правило, реакция идет между щелочью и кислотным оксидом. Если кислотный оксид соответствует многоосновной кислоте, может получиться кислая соль: CO 2 + KOH = KHCO 3 .

Кислотные оксиды, соответствующие сильным кислотам, могут реагировать и с нерастворимыми основаниями.

Иногда с нерастворимыми основаниями реагируют оксиды, соответствующие слабым кислотам, при этом может получиться средняя или основная соль (как правило, получается менее растворимое вещество): 2 Mg (OH ) 2 + CO 2 = (MgOH ) 2 CO 3 + H 2 O .

14. Кислотный оксид + соль. Реакция может идти в расплаве и в растворе. В расплаве менее летучий оксид вытесняет из соли более летучий. В растворе оксид, соответствующий более сильной кислоте, вытесняет оксид, соответствующий более слабой кислоте. Например, Na 2 CO 3 + SiO 2 = Na 2 SiO 3 + CO 2 , в прямом направлении эта реакция идет в расплаве, углекислый газ более летучий, чем оксид кремния; в обратном направлении реакция идет в растворе, угольная кислота сильнее кремниевой, к тому же оксид кремния выпадает в осадок.

Возможно соединение кислотного оксида с собственной солью, например, из хромата можно получить дихромат, и сульфата – дисульфат, из сульфита – дисульфит:

Na 2 SO 3 + SO 2 = Na 2 S 2 O 5

Для этого нужно взять кристаллическую соль и чистый оксид, или насыщенный раствор соли и избыток кислотного оксида.

В растворе соли могут реагировать с собственными кислотными оксидами с образованием кислых солей: Na 2 SO 3 + H 2 O + SO 2 = 2 NaHSO 3

15. Вода + кислотный оксид . Реакция возможна, если образуется растворимая или мало растворимая кислота. Если кислота нерастворимая или мало растворимая то идёт обратная реакция разложения кислоты на оксид и воду. Например, для серной кислоты характерна реакция получения из оксида и воды, реакция разложения практически не идёт, кремниевую кислоту нельзя получить из воды и оксида, но она легко разлагается на эти составляющие, а вот угольная и сернистая кислоты могут участвовать как в прямых, так и обратных реакциях.

16. Основание + кислота. Реакция идет, если хотя бы одно из реагирующих веществ растворимо. В зависимости от соотношения реагентов могут получаться средние, кислые и основные соли.

17. Основание + соль. Реакция идет, если оба исходные вещества растворимы, а в качестве продукта получается хотя бы один неэлектролит или слабый электролит (осадок, газ, вода).

18. Соль + кислота. Как правило,реакция идет, если оба исходные вещества растворимы, а в качестве продукта получается хотя бы один неэлектролит или слабый электролит (осадок, газ, вода).

Сильная кислота может реагировать с нерастворимыми солями слабых кислот (карбонатами, сульфидами, сульфитами, нитритами), при этом выделяется газообразный продукт.

Реакции между концентрированными кислотами и кристаллическими солями возможны, если при этом получается более летучая кислота: например, хлороводород можно получить действием концентрированной серной кислоты на кристаллический хлорид натрия, бромоводород и йодоводород – действием ортофосфорной кислоты на соответствующие соли. Можно действовать кислотой на собственную соль для получения кислой соли, например: BaSO 4 + H 2 SO 4 = Ba (HSO 4 ) 2 .

19. Соль + соль. Как правило,реакция идет, если оба исходные вещества растворимы, а в качестве продукта получается хотя бы один неэлектролит или слабый электролит.

1) соль не существует, потому что необратимо гидролизуется . Это большинство карбонатов, сульфитов, сульфидов, силикатов трехвалентных металлов, а так же некоторые соли двухвалентных металлов и аммония. Соли трехвалентных металлов гидролизуются до соответствующего основания и кислоты, а соли двухвалентных металлов – до менее растворимых основных солей.

Рассмотрим примеры:

2 FeCl 3 + 3 Na 2 CO 3 = Fe 2 ( CO 3 ) 3 + 6 NaCl (1)

Fe 2 (CO 3) 3 + 6H 2 O = 2Fe(OH) 3 + 3H 2 CO 3

H 2 CO 3 разлагается на воду и углекислый газ, вода в левой и правой части сокращается и получается: Fe 2 ( CO 3 ) 3 + 3 H 2 O = 2 Fe (OH ) 3 + 3 CO 2 (2)

Если теперь объединить (1) и (2) уравнения и сократить карбонат железа, мы получим суммарное уравнение, отражающее взаимодействие хлорида железа (III ) и карбоната натрия: 2 FeCl 3 + 3 Na 2 CO 3 + 3 H 2 O = 2 Fe (OH ) 3 + 3 CO 2 + 6 NaCl

CuSO 4 + Na 2 CO 3 = CuCO 3 + Na 2 SO 4 (1)

Подчеркнутая соль не существует из-за необратимого гидролиза:

2CuCO 3 + H 2 O = (CuOH) 2 CO 3 +CO 2 (2)

Если теперь объединить (1) и (2) уравнения и сократить карбонат меди, мы получим суммарное уравнение, отражающее взаимодействие сульфата (II ) и карбоната натрия:

2CuSO 4 + 2Na 2 CO 3 + H 2 O = (CuOH) 2 CO 3 + CO 2 + 2Na 2 SO 4

Прежде чем начать говорить про химические свойства оксидов, нужно вспомнить о том, что все оксиды делятся на 4 типа, а именно основные, кислотные, амфотерные и несолеобразующие. Для того чтобы определить тип какого-либо оксида, прежде всего нужно понять — оксид металла или неметалла перед вами, а затем воспользоваться алгоритмом (его надо выучить!), представленным в следующей таблице:

Оксид неметалла Оксид металла
1) Степень окисления неметалла +1 или +2
Вывод: оксид несолеобразующий
Исключение: Cl 2 O не относится к несолеобразующим оксидам
1) Степень окисления металла +1 или +2
Вывод: оксид металла — основный
Исключение: BeO, ZnO и PbO не относятся к основным оксидам
2) Степень окисления больше либо равна +3
Вывод: оксид кислотный
Исключение: Cl 2 O относится к кислотным оксидам, несмотря на степень окисления хлора +1
2) Степень окисления металла +3 или +4
Вывод: оксид амфотерный
Исключение: BeO, ZnO и PbO амфотерны, несмотря на степень окисления +2 у металлов
3) Степень окисления металла +5, +6, +7
Вывод: оксид кислотный

Помимо типов оксидов, указанных выше, введем также еще два подтипа основных оксидов, исходя из их химической активности, а именно активные основные оксиды и малоактивные основные оксиды.

  • К активным основным оксидам отнесем оксиды щелочных и щелочноземельных металлов (все элементы IA и IIA групп, кроме водорода H, бериллия Be и магния Mg). Например, Na 2 O, CaO, Rb 2 O, SrO и т.д.
  • К малоактивным основным оксидам отнесем все основные оксиды, которые не попали в список активных основных оксидов . Например, FeO, CuO, CrO и т.д.

Логично предположить, что активные основные оксиды часто вступают в те реакции, в которые не вступают малоактивные.
Следует отметить, что несмотря на то что фактически вода является оксидом неметалла (H 2 O), обычно ее свойства рассматривают в отрыве от свойств иных оксидов. Обусловлено это ее специфически огромным распространением в окружающем нас мире, в связи с чем в большинстве случаев вода является не реагентом, а средой, в которой может осуществляться бесчисленное множество химических реакций. Однако нередко она принимает и непосредственное участие в различных превращениях, в частности, некоторые группы оксидов с ней реагируют.

Какие оксиды реагируют с водой?

Из всех оксидов с водой реагируют только:
1) все активные основные оксиды (оксиды ЩМ и ЩЗМ);
2) все кислотные оксиды, кроме диоксида кремния (SiO 2);

т.е. из вышесказанного следует, что с водой точно не реагируют :
1) все малоактивные основные оксиды;
2) все амфотерные оксиды;
3) несолеобразующие оксиды (NO, N 2 O, CO, SiO).

Способность определить то, какие оксиды могут реагировать с водой даже без умения писать соответствующие уравнения реакций, уже позволяет получить баллы за некоторые вопросы тестовой части ЕГЭ.

Теперь давайте разберемся, как же все-таки те или иные оксиды реагируют с водой, т.е. научимся писать соответствующие уравнения реакций.

Активные основные оксиды , реагируя с водой, образуют соответствующие им гидроксиды. Напомним, что соответствующим оксиду металла является такой гидроксид, который содержит металл в той же степени окисления, что и оксид. Так, например, при реакции с водой активных основных оксидов K +1 2 O и Ba +2 O образуются соответствующие им гидроксиды K +1 OH и Ba +2 (OH) 2:

K 2 O + H 2 O = 2KOH – гидроксид калия

BaO + H 2 O = Ba(OH) 2 – гидроксид бария

Все гидроксиды, соответствующие активным основным оксидам (оксидам ЩМ и ЩЗМ), относятся к щелочам. Щелочами называют все хорошо растворимые в воде гидроксиды металлов, а также малорастворимый гидроксид кальция Ca(OH) 2 (как исключение).

Взаимодействие кислотных оксидов с водой так же, как и реакция активных основных оксидов с водой, приводит к образованию соответствующих гидроксидов. Только в случае кислотных оксидов им соответствуют не основные, а кислотные гидроксиды, чаще называемые кислородсодержащими кислотами . Напомним, что соответствующей кислотному оксиду является такая кислородсодержащая кислота, которая содержит кислотообразующий элемент в той же степени окисления, что и в оксиде.

Таким образом, если мы, например, хотим записать уравнение взаимодействия кислотного оксида SO 3 с водой, прежде всего мы должны вспомнить основные, изучаемые в рамках школьной программы, серосодержащие кислоты. Таковыми являются сероводородная H 2 S, сернистая H 2 SO 3 и серная H 2 SO 4 кислоты. Cероводородная кислота H 2 S, как легко заметить, не является кислородсодержащей, поэтому ее образование при взаимодействии SO 3 с водой можно сразу исключить. Из кислот H 2 SO 3 и H 2 SO 4 серу в степени окисления +6, как в оксиде SO 3 , содержит только серная кислота H 2 SO 4 . Поэтому именно она и будет образовываться в реакции SO 3 с водой:

H 2 O + SO 3 = H 2 SO 4

Аналогично оксид N 2 O 5 , содержащий азот в степени окисления +5, реагируя с водой, образует азотную кислоту HNO 3 , но ни в коем случае не азотистую HNO 2 , поскольку в азотной кислоте степень окисления азота, как и в N 2 O 5 , равна +5, а в азотистой — +3:

N +5 2 O 5 + H 2 O = 2HN +5 O 3

Взаимодействие оксидов друг с другом

Прежде всего нужно четко усвоить тот факт, что среди солеобразующих оксидов (кислотных, основных, амфотерных) практически никогда не протекают реакции между оксидами одного класса, т.е. в подавляющем большинстве случаев невозможно взаимодействие:

1) основный оксид + основный оксид ≠

2) кислотный оксид + кислотный оксид ≠

3) амфотерный оксид + амфотерный оксид ≠

В то время, как практически всегда возможно взаимодействие между оксидами, относящимися к разным типам, т.е. практически всегда протекают реакции между:

1) основным оксидом и кислотным оксидом;

2) амфотерным оксидом и кислотным оксидом;

3) амфотерным оксидом и основным оксидом.

В результате всех таких взаимодействий всегда продуктом является средняя (нормальная) соль.

Рассмотрим все указанные пары взаимодействий более детально.

В результате взаимодействия:

Me x O y + кислотный оксид, где Me x O y – оксид металла (основный или амфотерный)

образуется соль, состоящая из катиона металла Me (из исходного Me x O y) и кислотного остатка кислоты, соответствующей кислотному оксиду.

Для примера попробуем записать уравнения взаимодействия следующих пар реагентов:

Na 2 O + P 2 O 5 и Al 2 O 3 + SO 3

В первой паре реагентов мы видим основный оксид (Na 2 O) и кислотный оксид (P 2 O 5). Во второй – амфотерный оксид (Al 2 O 3) и кислотный оксид (SO 3).

Как уже было сказано, в результате взаимодействия основного/амфотерного оксида с кислотным образуется соль, состоящая из катиона металла (из исходного основного/амфотерного оксида) и кислотного остатка кислоты, соответствующей исходному кислотному оксиду.

Таким образом, при взаимодействии Na 2 O и P 2 O 5 должна образоваться соль, состоящая из катионов Na + (из Na 2 O) и кислотного остатка PO 4 3- , поскольку оксиду P +5 2 O 5 соответствует кислота H 3 P +5 O 4 . Т.е. в результате такого взаимодействия образуется фосфат натрия:

3Na 2 O + P 2 O 5 = 2Na 3 PO 4 — фосфат натрия

В свою очередь, при взаимодействии Al 2 O 3 и SO 3 должна образоваться соль, состоящая из катионов Al 3+ (из Al 2 O 3) и кислотного остатка SO 4 2- , поскольку оксиду S +6 O 3 соответствует кислота H 2 S +6 O 4 . Таким образом, в результате данной реакции получается сульфат алюминия:

Al 2 O 3 + 3SO 3 = Al 2 (SO 4) 3 — сульфат алюминия

Более специфическим является взаимодействие между амфотерными и основными оксидами. Данные реакции осуществляют при высоких температурах, и их протекание возможно благодаря тому, что амфотерный оксид фактически берет на себя роль кислотного. В результате такого взаимодействия образуется соль специфического состава, состоящая из катиона металла, образующего исходный основный оксид и «кислотного остатка»/аниона, в состав которого входит металл из амфотерного оксида. Формулу такого «кислотного остатка»/аниона в общем виде можно записать как MeO 2 x — , где Me – металл из амфотерного оксида, а х = 2 в случае амфотерных оксидов с общей формулой вида Me +2 O (ZnO, BeO, PbO) и x = 1 – для амфотерных оксидов с общей формулой вида Me +3 2 O 3 (например, Al 2 O 3 , Cr 2 O 3 и Fe 2 O 3).

Попробуем записать в качестве примера уравнения взаимодействия

ZnO + Na 2 O и Al 2 O 3 + BaO

В первом случае ZnO является амфотерным оксидом с общей формулой Me +2 O, а Na 2 O – типичный основный оксид. Согласно сказанному выше, в результате их взаимодействия должна образоваться соль, состоящая из катиона металла, образующего основный оксид, т.е. в нашем случае Na + (из Na 2 O) и «кислотного остатка»/аниона c формулой ZnO 2 2- , поскольку амфотерный оксид имеет общую формулу вида Me +2 O. Таким образом, формула получаемой соли при соблюдении условия электронейтральности одной ее структурной единицы («молекулы») будет иметь вид Na 2 ZnO 2:

ZnO + Na 2 O =t o => Na 2 ZnO 2

В случае взаимодействующей пары реагентов Al 2 O 3 и BaO первое вещество является амфотерным оксидом с общей формулой вида Me +3 2 O 3 , а второе — типичным основным оксидом. В этом случае образуется соль, содержащая катион металла из основного оксида, т.е. Ba 2+ (из BaO) и «кислотного остатка»/аниона AlO 2 — . Т.е. формула получаемой соли при соблюдении условия электронейтральности одной ее структурной единицы («молекулы») будет иметь вид Ba(AlO 2) 2 , а само уравнение взаимодействия запишется как:

Al 2 O 3 + BaO =t o => Ba(AlO 2) 2

Как мы уже писали выше, практически всегда протекает реакция:

Me x O y + кислотный оксид ,

где Me x O y – либо основный, либо амфотерный оксид металла.

Однако следует запомнить два «привередливых» кислотных оксида – углекислый газ (CO 2) и сернистый газ (SO 2). «Привередливость» их заключается в том, что несмотря на явные кислотные свойства, активности CO 2 и SO 2 недостаточно для их взаимодействия с малоактивными основными и амфотерными оксидами. Из оксидов металлов они реагируют только с активными основными оксидами (оксидами ЩМ и ЩЗМ). Так, например, Na 2 O и BaO, являясь активными основными оксидами, могут с ними реагировать:

CO 2 + Na 2 O = Na 2 CO 3

SO 2 + BaO = BaSO 3

В то время, как оксиды CuO и Al 2 O 3 , не относящиеся к активным основным оксидам, в реакцию с CO 2 и SO 2 не вступают:

CO 2 + CuO ≠

CO 2 + Al 2 O 3 ≠

SO 2 + CuO ≠

SO 2 + Al 2 O 3 ≠

Взаимодействие оксидов с кислотами

С кислотами реагируют основные и амфотерные оксиды. При этом образуются соли и вода:

FeO + H 2 SO 4 = FeSO 4 + H 2 O

Несолеобразующие оксиды не реагируют с кислотами вообще, а кислотные оксиды не реагируют с кислотами в большинстве случаев.

Когда все-таки кислотный оксид реагирует с кислотой?

Решая часть ЕГЭ с вариантами ответа, вы должны условно считать, что кислотные оксиды не реагируют ни с кислотными оксидами, ни с кислотами, за исключением следующих случаев:

1) диоксид кремния, будучи кислотным оксидом, реагирует с плавиковой кислотой, растворяясь в ней. В частности, благодаря этой реакции в плавиковой кислоте можно растворить стекло. В случае избытка HF уравнение реакции имеет вид:

SiO 2 + 6HF = H 2 + 2H 2 O ,

а в случае недостатка HF:

SiO 2 + 4HF = SiF 4 + 2H 2 O

2) SO 2 , будучи кислотным оксидом, легко реагирует с сероводородной кислотой H 2 S по типу сопропорционирования :

S +4 O 2 + 2H 2 S -2 = 3S 0 + 2H 2 O

3) Оксид фосфора (III) P 2 O 3 может реагировать с кислотами-окислителями, к которым относятся концентрированная серная кислота и азотная кислота любой концентрации. При этом степень окисления фосфора повышается от значения +3 до +5:

P 2 O 3 + 2H 2 SO 4 + H 2 O =t o => 2SO 2 + 2H 3 PO 4
(конц.)
3 P 2 O 3 + 4HNO 3 + 7 H 2 O =t o => 4NO + 6 H 3 PO 4
(разб.)
2HNO 3 + 3SO 2 + 2H 2 O =t o => 3H 2 SO 4 + 2NO
(разб.)

Взаимодействие оксидов с гидроксидами металлов

С гидроксидами металлов как основными, так и амфотерными реагируют кислотные оксиды. При этом образуется соль, состоящая из катиона металла (из исходного гидроксида металла) и кислотного остатка кислоты, соответствующей кислотному оксиду.

SO 3 + 2NaOH = Na 2 SO 4 + H 2 O

Кислотные оксиды, которым соответствуют многоосновные кислоты, с щелочами могут образовывать как нормальные, так и кислые соли:

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O

CO 2 + NaOH = NaHCO 3

P 2 O 5 + 6KOH = 2K 3 PO 4 + 3H 2 O

P 2 O 5 + 4KOH = 2K 2 HPO 4 + H 2 O

P 2 O 5 + 2KOH + H 2 O = 2KH 2 PO 4

«Привередливые» оксиды CO 2 и SO 2 , активности которых, как уже было сказано, не хватает для протекания их реакции с малоактивными основными и амфотерными оксидами, тем не менее, реагируют с большей частью соответствующих им гидроксидов металлов. Точнее, углекислый и сернистый газы взаимодействуют с нерастворимыми гидроксидами в виде их суспензии в воде. При этом образуются только осно вные соли, называемые гидроксокарбонатами и гидроксосульфитами, а образование средних (нормальных) солей невозможно:

2Zn(OH) 2 + CO 2 = (ZnOH) 2 CO 3 + H 2 O (в растворе)

2Cu(OH) 2 + CO 2 = (CuOH) 2 CO 3 + H 2 O (в растворе)

Однако с гидроксидами металлов в степени окисления +3, например, такими, как Al(OH) 3 , Cr(OH) 3 и т.д., углекислый и сернистый газ не реагируют вовсе.

Следует отметить также особую инертность диоксида кремния (SiO 2), в природе наиболее часто встречаемого в виде обычного песка. Данный оксид является кислотным, однако из гидроксидов металлов способен реагировать только с концентрированными (50-60%) растворами щелочей, а также с чистыми (твердыми) щелочами при сплавлении. При этом образуются силикаты:

2NaOH + SiO 2 =t o => Na 2 SiO 3 + H 2 O

Амфотерные оксиды из гидроксидов металлов реагируют только со щелочами (гидроксидами щелочных и щелочноземельных металлов). При этом при проведении реакции в водных растворах образуются растворимые комплексные соли:

ZnO + 2NaOH + H 2 O = Na 2 — тетрагидроксоцинкат натрия

BeO + 2NaOH + H 2 O = Na 2 — тетрагидроксобериллат натрия

Al 2 O 3 + 2NaOH + 3H 2 O = 2Na — тетрагидроксоалюминат натрия

Cr 2 O 3 + 6NaOH + 3H 2 O = 2Na 3 — гексагидроксохромат (III) натрия

А при сплавлении этих же амфотерных оксидов со щелочами получаются соли, состоящие из катиона щелочного или щелочноземельного металла и аниона вида MeO 2 x — , где x = 2 в случае амфотерного оксида типа Me +2 O и x = 1 для амфотерного оксида вида Me 2 +2 O 3:

ZnO + 2NaOH =t o => Na 2 ZnO 2 + H 2 O

BeO + 2NaOH =t o => Na 2 BeO 2 + H 2 O

Al 2 O 3 + 2NaOH =t o => 2NaAlO 2 + H 2 O

Cr 2 O 3 + 2NaOH =t o => 2NaCrO 2 + H 2 O

Fe 2 O 3 + 2NaOH =t o => 2NaFeO 2 + H 2 O

Следует отметить, что соли, получаемые сплавлением амфотерных оксидов с твердыми щелочами, могут быть легко получены из растворов соответствующих комплексных солей их упариванием и последующим прокаливанием:

Na 2 =t o => Na 2 ZnO 2 + 2H 2 O

Na =t o => NaAlO 2 + 2H 2 O

Взаимодействие оксидов со средними солями

Чаще всего средние соли с оксидами не реагируют.

Однако следует выучить следующие исключения из данного правила, часто встречающиеся на экзамене.

Одним из таких исключений является то, что амфотерные оксиды, а также диоксид кремния (SiO 2) при их сплавлении с сульфитами и карбонатами вытесняют из последних сернистый (SO 2) и углекислый (CO 2) газы соответственно. Например:

Al 2 O 3 + Na 2 CO 3 =t o => 2NaAlO 2 + CO 2

SiO 2 + K 2 SO 3 =t o => K 2 SiO 3 + SO 2

Также к реакциям оксидов с солями можно условно отнести взаимодействие сернистого и углекислого газов с водными растворами или взвесями соответствующих солей — сульфитов и карбонатов, приводящее к образованию кислых солей:

Na 2 CO 3 + CO 2 + H 2 O = 2NaHCO 3

CaCO 3 + CO 2 + H 2 O = Ca(HCO 3) 2

Также сернистый газ при пропускании его через водные растворы или взвеси карбонатов вытесняет из них углекислый газ благодаря тому, что сернистая кислота является более сильной и устойчивой кислотой, чем угольная:

K 2 СO 3 + SO 2 = K 2 SO 3 + CO 2

ОВР с участием оксидов

Восстановление оксидов металлов и неметаллов

Аналогично тому, как металлы могут реагировать с растворами солей менее активных металлов, вытесняя последние в свободном виде, оксиды металлов при нагревании также способны реагировать с более активными металлами.

Напомним, что сравнить активность металлов можно либо используя ряд активности металлов, либо, если одного или сразу двух металлов нет в ряду активности, по их положению относительно друг друга в таблице Менделеева: чем ниже и левее металл, тем он более активен. Также полезно помнить, что любой металл из семейства ЩМ и ЩЗМ будет всегда активнее металла, не являющегося представителем ЩМ или ЩЗМ.

В частности, на взаимодействии металла с оксидом менее активного металла основан метод алюмотермии, используемый в промышленности для получения таких трудновосстанавливаемых металлов, как хром и ванадий:

Cr 2 O 3 + 2Al =t o => Al 2 O 3 + 2Cr

При протекании процесса алюмотермии образуется колоссальное количество тепла, а температура реакционной смеси может достигать более 2000 o C.

Также оксиды практически всех металлов, находящихся в ряду активности правее алюминия, могут быть восстановлены до свободных металлов водородом (H 2), углеродом (C) и угарным газом (CO) при нагревании. Например:

Fe 2 O 3 + 3CO =t o => 2Fe + 3CO 2

CuO + C =t o => Cu + CO

FeO + H 2 =t o => Fe + H 2 O

Следует отметить, что в случае, если металл может иметь несколько степеней окисления, при недостатке используемого восстановителя возможно также неполное восстановление оксидов. Например:

Fe 2 O 3 + CO =t o => 2FeO + CO 2

4CuO + C =t o => 2Cu 2 O + CO 2

Оксиды активных металлов (щелочных, щелочноземельных, магния и алюминия) с водородом и угарным газом не реагируют .

Однако оксиды активных металлов реагируют с углеродом, но иначе, чем оксиды менее активных металлов.

В рамках программы ЕГЭ, чтобы не путаться, следует считать, что в результате реакции оксидов активных металлов (до Al включительно) с углеродом образование свободного ЩМ, ЩЗМ, Mg, а также Al невозможно. В таких случаях происходит образование карбида металла и угарного газа. Например:

2Al 2 O 3 + 9C =t o => Al 4 C 3 + 6CO

CaO + 3C =t o => CaC 2 + CO

Оксиды неметаллов нередко могут быть восстановлены металлами до свободных неметаллов. Так, например, оксиды углерода и кремния при нагревании реагируют с щелочными, щелочноземельными металлами и магнием:

CO 2 + 2Mg =t o => 2MgO + C

SiO 2 + 2Mg =t o => Si + 2MgO

При избытке магния последнее взаимодействие может приводить также к образованию силицида магния Mg 2 Si:

SiO 2 + 4Mg =t o => Mg 2 Si + 2MgO

Оксиды азота могут быть относительно легко восстановлены даже менее активными металлами, например, цинком или медью:

Zn + 2NO =t o => ZnO + N 2

NO 2 + 2Cu =t o => 2CuO + N 2

Взаимодействие оксидов с кислородом

Для того чтобы в заданиях реального ЕГЭ суметь ответить на вопрос, реагирует ли какой-либо оксид с кислородом (O 2), прежде всего нужно запомнить, что оксиды, способные реагировать с кислородом (из тех, что могут попасться вам на самом экзамене) могут образовать только химические элементы из списка:

Встречающиеся в реальном ЕГЭ оксиды любых других химических элементов с кислородом реагировать не будут (!) .

Для более наглядного удобного запоминания перечисленных выше списка элементов, на мой взгляд, удобна следующая иллюстрация:

Все химические элементы, способные образовывать оксиды, реагирующие с кислородом (из встречающегося на экзамене)

В первую очередь, среди перечисленных элементов следует рассмотреть азот N, т.к. отношение его оксидов к кислороду заметно отличается от оксидов остальных элементов приведенного выше списка.

Следует четко запомнить тот факт, что всего азот способен образовать пять оксидов, а именно:

Из всех оксидов азота с кислородом может реагировать только NO. Данная реакция протекает очень легко при смешении NO как с чистым кислородом, так и с воздухом. При этом наблюдается быстрое изменение окраски газа с бесцветной (NO) на бурую (NO 2):

2NO + O 2 = 2NO 2
бесцветный бурый

Для того чтобы дать ответ на вопрос — реагирует ли с кислородом какой-либо оксид любого другого из перечисленных выше химических элементов (т.е. С, Si , P , S , Cu , Mn , Fe , Cr ) — прежде всего обязательно нужно запомнить их основные степени окисления (СО). Вот они:

Далее нужно запомнить тот факт, что из возможных оксидов указанных выше химических элементов, с кислородом будут реагировать только те, которые содержат элемент в минимальной, среди указанных выше, степени окисления. При этом степень окисления элемента повышается до ближайшего положительного значения из возможных:

элемент

Отношение его оксидов к кислороду

С Минимальная среди основных положительных степеней окисления углерода равна +2 , а ближайшая к ней положительная — +4 . Таким образом, с кислородом из оксидов C +2 O и C +4 O 2 реагирует только CO. При этом протекает реакция:

2C +2 O + O 2 =t o => 2C +4 O 2

CO 2 + O 2 ≠ — реакция невозможна в принципе, т.к. +4 – высшая степень окисления углерода.

Si Минимальная среди основных положительных степеней окисления кремния равна +2, а ближайшая к ней положительная — +4. Таким образом, с кислородом из оксидов Si +2 O и Si +4 O 2 реагирует только SiO. Из-за некоторых особенностей оксидов SiO и SiO 2 возможно окисление лишь части атомов кремния в оксиде Si +2 O. Т.е. в результате его взаимодействия с кислородом, образуется смешанный оксид, содержащий как кремний в степени окисления +2, так и кремний в степени окисления +4, а именно Si 2 O 3 (Si +2 O·Si +4 O 2):

4Si +2 O + O 2 =t o => 2Si +2 ,+4 2 O 3 (Si +2 O·Si +4 O 2)

SiO 2 + O 2 ≠ — реакция невозможна в принципе, т.к. +4 – высшая степень окисления кремния.

P Минимальная среди основных положительных степеней окисления фосфора равна +3, а ближайшая к нему положительная — +5. Таким образом, с кислородом из оксидов P +3 2 O 3 и P +5 2 O 5 реагирует только P 2 O 3 . При этом протекает реакция доокисления фосфора кислородом от степени окисления +3 до степени окисления +5:

P +3 2 O 3 + O 2 =t o => P +5 2 O 5

P +5 2 O 5 + O 2 ≠ — реакция невозможна в принципе, т.к. +5 – высшая степень окисления фосфора.

S Минимальная среди основных положительных степеней окисления серы равна +4, а ближайшая к ней по значению положительная — +6. Таким образом, с кислородом из оксидов S +4 O 2 , S +6 O 3 реагирует только SO 2 . При этом протекает реакция:

2S +4 O 2 + O 2 =t o => 2S +6 O 3

2S +6 O 3 + O 2 ≠ — реакция невозможна в принципе, т.к. +6 – высшая степень окисления серы.

Cu Минимальная среди положительных степеней окисления меди равна +1, а ближайшая к ней по значению — положительная (и единственная) +2. Таким образом, с кислородом из оксидов Cu +1 2 O, Cu +2 O реагирует только Cu 2 O. При этом протекает реакция:

2Cu +1 2 O + O 2 =t o => 4Cu +2 O

CuO + O 2 ≠ — реакция невозможна в принципе, т.к. +2 – высшая степень окисления меди.

Cr Минимальная среди основных положительных степеней окисления хрома равна +2, а ближайшая к ней по значению положительная равна +3. Таким образом, с кислородом из оксидов Cr +2 O, Cr +3 2 O 3 и Cr +6 O 3 реагирует только CrO, при этом окисляясь кислородом до соседней (из возможных) положительной степени окисления, т.е. +3:

4Cr +2 O + O 2 =t o => 2Cr +3 2 O 3

Cr +3 2 O 3 + O 2 ≠ — реакция не протекает, несмотря на то что существует оксид хрома и в большей, чем +3, степени окисления (Cr +6 O 3). Невозможность протекания данной реакции связана с тем, что требуемый для ее гипотетического осуществления нагрев сильно превышает температуру разложения оксида CrO 3 .

Cr +6 O 3 + O 2 ≠ — данная реакция не может протекать в принципе, т.к. +6 – высшая степень окисления хрома.

Mn Минимальная среди основных положительных степеней окисления марганца равна +2, а ближайшая к ней положительная — +4. Таким образом, с кислородом из возможных оксидов Mn +2 O, Mn +4 O 2 , Mn +6 O 3 и Mn +7 2 O 7 реагирует только MnO, при этом окисляясь кислородом до соседней (из возможных) положительной степени окисления, т.е. +4:

2Mn +2 O + O 2 =t o => 2Mn +4 O 2

в то время, как:

Mn +4 O 2 + O 2 ≠ и Mn +6 O 3 + O 2 ≠ — реакции не протекают, несмотря на то что существует оксид марганца Mn 2 O 7 , содержащий Mn в большей, чем +4 и +6, степени окисления. Связанно это с тем, что требуемый для дальнейшего гипотетического окисления оксидов Mn +4 O 2 и Mn +6 O 3 нагрев существенно превышает температуру разложения получаемых оксидов MnO 3 и Mn 2 O 7.

Mn +7 2 O 7 + O 2 ≠ — данная реакция невозможна в принципе, т.к. +7 – высшая степень окисления марганца.

Fe Минимальная среди основных положительных степеней окисления железа равна +2 , а ближайшая к ней среди возможных — +3 . Несмотря на то что для железа существует степень окисления +6, кислотного оксида FeO 3 , впрочем, как и соответствующей ему «железной» кислоты не существует.

Таким образом, из оксидов железа с кислородом могут реагировать только те оксиды, которые содержат Fe в степени окисления +2. Это либо оксид Fe +2 O, либо смешанный оксид железа Fe +2 ,+3 3 O 4 (железная окалина):

4Fe +2 O + O 2 =t o => 2Fe +3 2 O 3 или

6Fe +2 O + O 2 =t o => 2Fe +2,+3 3 O 4

смешанный оксид Fe +2,+3 3 O 4 может быть доокислен до Fe +3 2 O 3:

4Fe +2 ,+3 3 O 4 + O 2 =t o => 6Fe +3 2 O 3

Fe +3 2 O 3 + O 2 ≠ — протекание данной реакции невозможно в принципе, т.к. оксидов, содержащих железо в степени окисления выше, чем +3, не существует.

Оксидами называются сложные вещества, в состав молекул которых входят атомы кислорода в степни окисления – 2 и какого-нибудь другого элемента.

могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ – это оксиды.

Они бывают солеобразующими и несолеобразующие.

Солеобразующие оксиды – это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями – соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:

CuO + 2HCl → CuCl 2 + H 2 O.

В результате химических реакций можно получать и другие соли:

CuO + SO 3 → CuSO 4 .

Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N 2 O, NO.

Солеобразующие оксиды в свою очередь бывают 3-х типов: основными (от слова « основание» ), кислотными и амфотерными.

Основными оксидами называются такие оксиды металлов, которым соответствуют гидроксиды, относящиеся к классу оснований. К основным оксидам относятся, например, Na 2 O, K 2 O, MgO, CaO и т.д.

Химические свойства основных оксидов

1. Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания:

Na 2 O + H 2 O → 2NaOH.

2. Взаимодействуют с кислотными оксидами, образуя соответствующие соли

Na 2 O + SO 3 → Na 2 SO 4 .

3. Реагируют с кислотами, образуя соль и воду:

CuO + H 2 SO 4 → CuSO 4 + H 2 O.

4. Реагируют с амфотерными оксидами:

Li 2 O + Al 2 O 3 → 2LiAlO 2 .

Если в составе оксидов в качестве второго элемента будет неметалл или металл, проявляющий высшую валентность (обычно проявляют от IV до VII), то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидроксиды, относящие к классу кислот. Это, например, CO 2 , SO 3 , P 2 O 5 , N 2 O 3 , Cl 2 O 5 , Mn 2 O 7 и т.д. Кислотные оксиды растворяются в воде и щелочах, образуя при этом соль и воду.

Химические свойства кислотных оксидов

1. Взаимодействуют с водой, образуя кислоту:

SO 3 + H 2 O → H 2 SO 4 .

Но не все кислотные оксиды непосредственно реагируют с водой (SiO 2 и др.).

2. Реагируют с основанными оксидами с образованием соли:

CO 2 + CaO → CaCO 3

3. Взаимодействуют со щелочами, образуя соль и воду:

CO 2 + Ba(OH) 2 → BaCO 3 + H 2 O.

В состав амфотерного оксида входит элемент, который обладает амфотерными свойствами. Под амфотерностью понимают способность соединений проявлять в зависимости от условий кислотные и основные свойства. Например, оксид цинка ZnO может быть как основанием, так и кислотой (Zn(OH) 2 и H 2 ZnO 2). Амфотерность выражается в том, что в зависимости от условий амфотерные оксиды проявляют либо осно́вные, либо кислотные свойства.

Химические свойства амфотерных оксидов

1. Взаимодействуют с кислотами, образуя соль и воду:

ZnO + 2HCl → ZnCl 2 + H 2 O.

2. Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате реакции соль – цинкат натрия и воду:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O.

При взаимодействии оксида цинка с раствором щелочи (того же NaOH) протекает другая реакция:

ZnO + 2 NaOH + H 2 O => Na 2 .

Координационное число – характеристика, которая определяет число ближайших частиц: атомов или инов в молекуле или кристалле . Для каждого амфотерного металла характерно свое координационное число. Для Be и Zn – это 4; Для и Al – это 4 или 6; Для и Cr – это 6 или (очень редко) 4;

Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.

Остались вопросы? Хотите знать больше об оксидах?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Похожие статьи