История происхождения антибиотиков. История открытия пенициллина - биографии исследователей, массовое производство и последствия для медицины Синтезировал первый антибиотик

27.06.2019

Много веков назад было замечено, что зеленая плесень помогает в лечении тяжелых гнойных ран. Но в те далекие времена не знали ни о микробах, ни об антибиотиках. Первое научное описание лечебного действия зеленой плесени сделали в 70-х годах 19 века русские ученые В.А.Манассеин и А.Г. Полотебнов. После этого на несколько десятилетий о зеленой плесени забыли, и только в 1929 году она стала настоящей сенсацией, перевернувшей научный мир. Феноменальные качества этого неприятного живого организма изучил профессор микробиологии Лондонского университета Александр Флеминг.

Опыты Флеминга показали, что зеленая плесень вырабатывает особое вещество, обладающее антибактериальными свойствами и подавляющее рост многих болезнетворных микроорганизмов. Это вещество ученый назвал пенициллином, по научному названию вырабатывающих его плесневых грибов. В ходе дальнейших исследований Флеминг выяснил, что пенициллин губительно действует на микробы, но вместе с тем не оказывает отрицательного действия на лейкоциты, принимающие активное участие в борьбе с инфекцией, и другие клетки организма. Но Флемингу не удалось выделить чистую культуру пенициллина для производства лекарственных препаратов.

Учение об антибиотиках - молодая синтетическая ветвь современного естествознания. Впервые в 1940 году был получен в кристаллическом виде химиотерапевтический препарат микробного происхождения – пенициллин - антибиотик, открывший летоисчисление эры антибиотиков.

Многие учёные мечтали о создании таких препаратов, которые можно было бы использовать при лечении различных заболеваний человека, о препаратах, способных убивать патогенных бактерий, не оказывая вредного действия на организм больного.

Пауль Эрлих (1854-1915) в результате многочисленных опытов синтезировал в 1912 году мышьяковистый препарат - сальварсан, убивающий in vitro возбудителя сифилиса. В 30-х годах прошлого столетия в результате химического синтеза были получены новые органические соединения – сульфамиды, среди которых красный стрептоцид (пронтозил) был первым эффективным препаратом, оказавшим терапевтическое действие при тяжёлых стрептококковых инфекциях.

Он долгое время пребывал в гордом одиночестве, если не считать используемого индейцами Южной и Центральной Америки для лечения малярии хинина - алкалоида хинного дерева. Только спустя четверть века были открыты сульфаниламидные препараты, а в 1940 году Александр Флеминг выделил в чистом виде пенициллин.

В 1937 году в нашей стране был синтезирован сульфидин – соединение, близкое к пронтозилу. Открытие сульфамидных препаратов и применение их в медицинской практике составило известную эпоху в химиотерапии многих инфекционных заболеваний, в том числе сепсиса, менингита, пневмонии, рожистого воспаления, гонореи и некоторых других.

Луи Пастер и С. Джеберт в 1877 году сообщили, что аэробные бактерии подавляют рост Bacillus anthracis.

В конце XIX века В. А. Манассеин (1841-1901) и А. Г. Полотебнов (1838-1908) показали, что грибы из рода Penicillium способны задерживать в условиях in vivo развитие возбудителей ряда кожных заболеваний человека.

И. И. Мечников (1845 - 1916) ещё в 1894 году обратил внимание на возможность использования некоторых сапрофитных бактерий в борьбе с патогенными микроорганизмами.

В 1896 году Р. Гозио из культурной жидкости Penicillium brevicompactum выделил кристаллическое соединение - микофеноловую кислоту, подавляющее рост бактерий сибирской язвы.

Эммирих и Лоу в 1899 году сообщили об антибиотическом веществе, образуемом Pseudomonas pyocyanea, они назвали его пиоцианазой; препарат использовался в качестве лечебного фактора как местный антисептик.

В 1910-1913 годах O. Black и U. Alsberg выделили из гриба рода Penicillium пеницилловую кислоту, обладающую антимикробными свойствами.

В 1929 году А. Флемингом был открыт новый препарат пенициллин , который только в 1940 году удалось выделить в кристаллическом виде.

Открытие Флеминга

В 1922 году после неудачных попыток выделить возбудителя простудных заболеваний Флеминг чисто случайно открыл лизоцим (название придумал профессор Райт) - фермент, убивающий некоторые бактерии и не причиняющий вреда здоровым тканям. К сожалению, перспективы медицинского использования лизоцима оказались довольно ограниченными, поскольку он был достаточно эффективным средством против бактерий, не являющихся возбудителями заболеваний, и совершенно неэффективным против болезнетворных организмов. Это открытие побудило Флеминга заняться поисками других антибактериальных препаратов, которые были бы безвредны для организма человека.

Следующая счастливая случайность - открытие Флемингом пенициллина в 1928 году - явилась результатом стечения ряда обстоятельств, столь невероятных, что в них почти невозможно поверить. В отличие от своих аккуратных коллег, очищавших чашки с бактериальными культурами после окончания работы с ними, Флеминг не выбрасывал культуры по 2-3 недели, пока его лабораторный стол не оказывался загроможденным 40-50 чашками. Тогда он принимался за уборку, просматривал культуры одну за другой, чтобы не пропустить что-нибудь интересное. В одной из чашек он обнаружил плесень, которая, к его удивлению, угнетала высеянную культуру бактерии. Отделив плесень, он установил, что «бульон», на котором разрослась плесень, приобрел выраженную способность подавлять рост микроорганизмов, а также имел бактерицидные и бактериологические свойства.

Неряшливость Флеминга и сделанное им наблюдение явились двумя обстоятельствами в целом ряду случайностей, способствовавших открытию. Плесень, которой оказалась заражена культура, относилась к очень редкому виду. Вероятно, она была занесена из лаборатории, где выращивались образцы плесени, взятые из домов больных, страдающих бронхиальной астмой, с целью изготовления из них десенсибилизирующих экстрактов. Флеминг оставил ставшую впоследствии знаменитой чашку на лабораторном столе и уехал отдыхать. Наступившее в Лондоне похолодание создало благоприятные условия для роста плесени, а последовавшее затем потепление - для бактерий. Как выяснилось позднее, стечению именно этих обстоятельств было обязано знаменитое открытие.

Первоначальные исследования Флеминга дали ряд важных сведений о пенициллине. Он писал, что это «эффективная антибактериальная субстанция..., оказывающая выраженное действие на пиогенные кокки и палочки дифтерийной группы. .. Пенициллин даже в огромных дозах не токсичен для животных... Можно предположить, что он окажется эффективным антисептиком при наружной обработке участков, пораженных чувствительными к пенициллину микробами, или при его введении внутрь». Зная это, Флеминг не сделал тем не менее столь очевидного следующего шага, который 12 лет спустя был предпринят Хоуардом У. Флори и состоял в том, чтобы выяснить, будут ли спасены от летальной инфекции мыши, если лечить их инъекциями пенициллинового бульона. Флеминг назначил его нескольким пациентам для наружного применения. Однако результаты были противоречивыми. Раствор оказался нестабильным и с трудом поддавался очистке, если речь шла о больших его количествах.

Подобно Пастеровскому институту в Париже, отделение вакцинации в больнице Св. Марии, где работал Флеминг, существовало благодаря продаже вакцин. Флеминг обнаружил, что в процессе приготовления вакцин пенициллин помогает предохранить культуры от стафилококка. Это было техническое достижение, и ученый широко пользовался им, еженедельно отдавая распоряжения изготовлять большие партии бульона. Он делился образцами культуры пенициллина с коллегами в других лабораториях, но ни разу не упомянул о пенициллине ни в одной из 27 статей и лекций, опубликованных им в 1930-1940 годы, даже если речь шла о веществах, вызывав ющих гибель бактерий.

Таким образом, к моменту получения пенициллина в очищенном виде было известно пять антибиотических средств (микофеноловая кислота, пиоцианаза, актиномицетин, мицетин и тиротрицин). В последующем число антибиотиков быстро росло и к настоящему времени их описано почти 7000 (образуемых лишь микроорганизмами); при этом только около 160 используется в медицинской практике. С получением пенициллина как препарата (1940 год) возникло новое направление в науке – учение об антибиотиках, которое необычайно быстро развивается в последние десятилетия.

В 70-х годах ежегодно описывалось более 300 новых антибиотиков. В 1937 году Вельш описал первый антибиотик стрептомицетного происхождения актимицетин, в 1939 году Красильниковым и Кореняко был получен мицетин и Дюбо – тиротрицин. Впоследующем число антибиотиков росло очень быстрыми темпами.

Нобелевская премия по физиологии и медицине 1945 года была присуждена совместно Флемингу, Чейну и Флори «за открытие пенициллина и его целебного воздействия при различных инфекционных болезнях». В Нобелевской лекции Флеминг отметил, что «феноменальный успех пенициллина привел к интенсивному изучению антибактериальных свойств плесеней и других низших представителей растительного мира. Лишь немногие из них обладают такими свойствами».

В оставшиеся 10 лет жизни ученый был удостоен 25 почетных степеней, 26 медалей, 18 премий, 30 наград и почетного членства в 89 академиях наук и научных обществах.

Побочные действия

Однако антибиотики - это не только панацея от микробов, но и сильные яды. Ведя на уровне микромира между собой смертоносные войны, с их помощью одни микроорганизмы безжалостно расправляются с другими. Человек подметил это свойство антибиотиков и использовал его в своих целях - начал расправляться с микробами их же собственным оружием, создал на основе природных сотни еще более мощных синтетических препаратов. И все же предначертанное антибиотикам самой природой свойство убивать по-прежнему неотъемлемо от них.

Все антибиотики, без исключений, обладают побочными действиями! Это следует уже из самого названия таких веществ. Естественное природное свойство всех антибиотиков убивать микробы и микроорганизмы, к сожалению, невозможно направить на уничтожение только одного вида бактерий или микробов. Уничтожая вредные бактерии и микроорганизмы, любой антибиотик неминуемо оказывает такое же угнетающее воздействие и на все схожие с "врагом" полезные микроорганизмы, которые, как известно, принимают активное участие практически во всех процессах происходящих в нашем организме.



Способность одних микроорганизмов подавлять жизнь других (антибиоз ) была впервые установлена И. И. Мечниковым , который предложил использовать это свойство для лечебных целей: в частности, он применил для подавления жизнедеятельности вредных гнилостных бактерий кишечника молочнокислую палочку, которую предлагал вводить с простоквашей.

В 1868—1871 гг. В. А. Манассеин и А. Г. Полотебнов указали на способность зеленой плесени подавлять рост различных патогенных бактерий и с успехом применили ее для лечения инфицированных ран и язв.

Большое значение в учении об антибиотиках имели исследования Н. А. Красильникова, А. И. Кореняко, М. И. Нахимовской и Д. М. Новогрудского, которые установили Широкое распространение в Почве грибов, вырабатывающих различные антибиотические вещества.

В 1940 г. были разработаны методы излечения и получения из культуральной жидкости антибиотических веществ в чистом виде. Многие из этих антибиотических веществ оказались весьма эффективными при лечении ряда инфекционных болезней.

Наибольшее значение в медицинской практике получили следующие антибиотики:

Пенициллин,

Стрептомицин,

Левомицетин,

Синтомицин,

Тетрациклины,

Альбомицин,

Грамицидин С,

Мицерин и др.

В настоящее время известна химическая природа многих антибиотиков, что позволяет получать эти антибиотики не только из естественных продуктов, но и синтетическим путем.

Антибиотики, обладая способностью подавлять развитие патогенных микробов в организме, в то же время являются малотоксичными для организма человека. Задерживая развитие в организме патогенных микробов, они тем самым способствуют усилению защитных свойств организма и быстрейшему выздоровлению больного. Вот почему требуется правильный выбор антибиотика для лечения различных инфекционных заболеваний. В отдельных случаях можно пользоваться комбинацией антибиотиков или проводить комплексное лечение антибиотиками, сульфаниламидами и другими препаратами.

Пеницилин

Пенициллин — вещество, вырабатываемое плесенью Penicillium при росте ее на жидких питательных средах. Впервые оно было получено английским ученым А. Флемингом в 1928 г. В СССР пенициллин был получен 3. В. Ермольевой в 1942 г. Для получения пенициллина плесень засевают в специальную питательную среду, где по мере ее размножения накапливается пенициллин. Оптимальная температура роста Penicillium 24—26°. Максимальное накопление пенициллина происходит через 5—6 дней, а при интенсивном доступе кислорода (аэрации) — более быстро. Питательную жидкость фильтруют и подвергают специальной обработке и химической очистке. В результате получается очищенный препарат в виде кристаллического порошка. В жидком виде пенициллин нестоек, в порошке более устойчив, особенно при температуре 4—10°. Порошок быстро и полностью растворяется в дистиллированной воде или физиологическом растворе поваренной соли.

Пенициллин обладает способностью задерживать размножение в организме многих патогенных микробов— стафилококков, стрептококков, гонококков, анаэробных бацилл, спирохет сифилиса. Не действует пенициллин на палочки брюшного тифа, дизентерии, бруцеллы, туберкулезную палочку. Пенициллин широко применяют для лечения нагноительных «процессов, септических заболеваний, воспаления легких, гонореи, цереброспинального менингита, сифилиса, анаэробных инфекций.

В отличие от большинства синтетических химических препаратов пенициллин мало токсичен для человека и его можно вводить в больших дозах. Вводят пенициллин обычно внутримышечно, так как при введении через рот он быстро разрушается желудочным и кишечным соком.

В организме пенициллин быстро выводится почками, поэтому его назначают в виде внутримышечных инъекций через каждые 3—4 часа. Количество вводимого пенициллина исчисляется в единицах действия (ЕД). За единицу пенициллина принимают то количество его, которое полностью задерживает рост золотистого стафилококка в 50 мл бульона. Выпускаемые отечественной промышленностью препараты пенициллина содержат в одном флаконе от 200 000 до 500 000 ЕД пенициллина.

Для удлинения срока действия пенициллина в организме изготовлен ряд новых препаратов, содержащих пенициллин в комплексе с другими веществами, которые способствуют медленному всасыванию пенициллина и еще более медленному выделению его из организма почками (новоциллин, экмопенициллин, бициллин 1, 2, 3 и Др.). Некоторые из этих препаратов можно принимать внутрь, так как они не разрушаются под действием желудочного и кишечного сока. К числу таких препаратов относится, например, феноксиметилпенициллин; последний выпускается в виде таблеток для приема перорально.

В настоящее время получена большая группа новых препаратов пенициллина — полусинтетических пенициллинов. В основе этих препаратов лежит 6-амино-пеницил-линовая кислота, составляющая ядро пенициллина, к которой химическим путем присоединяются различные радикалы. Новые пенициллины (метициллин, оксациллин и др.) действуют на микроорганизмы, устойчивые к бензилпенициллину.

Наибольшее число антибиотиков вырабатывается лучистыми грибами — актиномицетами. Из этих антибиотиков широкое применение получили стрептомицин, хлоромицетин (левомицетин), биомицин (ауреомицин), террамицин, тетрациклин, колимиции, мицерин и др.

Стрептомицин

Стрептомицин — вещество, вырабатываемое лучистым грибом Actinomyces globisporus streptomycini. Он обладает способностью подавлять рост многих грамотрицательных и грамположительных бактерий, а также туберкулезной палочки. Недостатком стрептомицина является то, что микробы быстро к нему привыкают и становятся устойчивыми к его действию. Активность действия стрептомицина проверяют на кишечной палочке (Bact. coli). Практическое применение стрептомицин получил для лечения некоторых форм туберкулеза, особенно туберкулезного менингита, туляремии, а также в хирургической практике.

Хлоромицетин

Хлоромицетин получен в 1947 г. из культуральной жидкости актиномицетов. В 1949 г. учеными был синтезирован аналогичный препарат под названием левомицетина. Левомицетин представляет собой кристаллизированный порошок, очень устойчивый как в сухом состоянии, так и в растворах. Растворы левомицетина выдерживают кипячение в течение 5 часов. Левомицетин активен по отношению ко многим грамположительным и грамотрицательным бактериям, а также к риккетсиям. Принимают левомицетин через рот. Левомицетин рекомендуют применять для лечения следующих заболеваний: брюшного тифа и паратифов, сыпного тифа, бруцеллеза, коклюша, дизентерии и хирургических инфекций, вызванных грамотрицательными бактериями.

Наряду с левомицетином широко применяется другой синтетический препарат — синтомицин, представляющий собой неочищенный левомицетин. По своему действию синтомицин аналогичен левомицетину; он назначается в дозе в 2 раза большей, чем левомицетин.

Тетрациклины

К ним относится хлортетрациклин (ауреомицин, биомицин), окситетрациклин (терра-мицин) и тетрациклин. Хлортетрациклин получен из культуральной жидкости гриба Actinomyces aureofaciens, он обладает широким спектром действия против большинства грамположительных и грамотрицательных бактерий, простейших, риккетсий и некоторых крупных вирусов (орнитоза), хорошо всасывается при приеме перорально и диффундирует в ткани. Применяется для лечения дизентерии, бруцеллеза, риккетсиозов, сифилиса, орнитоза и других инфекционных заболеваний. Окситетрациклин и тетрациклин по своим свойствам напоминают хлортетрациклин и близкие к нему по механизму действия на микроб.

Неомицины

Неомицины — группа антибиотиков, полученных из культуральной жидкости актиномицетов, активны в отношении многих грамотрицательных и грамположительных бактерий, в том числе микобактерий. Их активность не снижается в присутствии белков крови или ферментов. Препараты плохо всасываются в желудочно-кишечном тракте, относительно мало токсичны. Применяются главным образом для местного лечения хирургических и кожных инфекций, вызванных стафилококками, устойчивыми к другим антибиотикам.

К группе неомицинов относятся советские препараты мицерин и колимицин, которые нашли широкое применение для лечения колиэнтеритов у детей, вызванных кишечными палочками или стафилококками, устойчивыми к другим антибиотикам.

Нистастин

Нистатин — антибиотик, эффективный не против бактерий, а против грибов. Он плохо растворяется в воде, поэтому его нельзя применять парентерально, а надо вводить внутрь в виде таблеток или местно в виде мазей.

Нистатин часто входит в состав таблеток вместе с другим антибиотиком — тетрациклином — с целью предотвращения кандидоза как осложнения при длительном применении тетрациклина.

Из антибиотиков бактериального происхождения пан большее значение имеет грамицидин.

Грамицидин

Грамицидин — вещество, полученное из культуры почвенной споровой палочки В. brevis. Название свое препарат получил в связи с тем, что он подавляет рост преимущественно грамположительных бактерий. В 1942 г. в СССР ученые открыли антибиотик, получивший название грамицидин С (советский грамицидин). Он обладает широким диапазоном действия, подавляя рост бактерий. Грамицидин С применяют в виде водно-спиртовых, спиртовых и масляных растворов только для местного лечения нагноительных и язвенных процессов.

Большой интерес представляют также антибиотики животного происхождения.

В 1887 г. Н. Ф. Гамалея указал на антибактериальное действие тканей животного организма. Затем в 1893 г. О. О. Успенский доказал бактерицидное действие экстрактов печени в отношении палочек сибирской язвы, сапа, стафилококков и других микробов.

Из антибиотиков животного происхождения получили применение следующие.

1. Лизоцим — вещество, продуцируемое клетками животных и человека. Впервые обнаружен П. Н. Лащенковым в 1909 г. в белке куриного яйца. Лизоцим содержится в слезах, секретах слизистых, в печени, селезенке, почках, сыворотке. Обладает способностью растворять как живых, так и мертвых микробов. Лизоцим в очищенном виде был применен 3. В. Ермольевой и И. С. Буяновской в клинической, промышленной и сельскохозяйственной практике. Наблюдается эффект от применения лизоцима при заболеваниях уха, горла, носа и глаз, при после гриппозных осложнениях.

2. Экмолин получен из рыбной ткани, биологически активен по отношению к тифозным и дизентерийным палочкам, стафилококкам и стрептококкам, действует также па вирус гриппа. Экмолин усиливает действие пенициллина и стрептомицина. Сообщают о положительных результатах комплексного применения экмолина со стрептомицином для лечения острой и хронической дизентерии и экмолина с пенициллином — для лечения и профилактики кокковых инфекций.

3. Фитонциды — вещества, выделяемые растениями. Открыты советским исследователем Б. П. Токиным в 1928 г. Эти вещества оказывают антимикробное действие на многих микроорганизмов, в том числе и на простейших. Наиболее активные фитонциды вырабатывают лук и чеснок. Если пожевать в течение нескольких минут лук, полость рта быстро очищается от микробов. Фитонциды применяют для местного лечения инфицированных ран. Антибиотики получили чрезвычайно широкое применение в медицинской практике и способствовали резкому уменьшению числа смертельных исходов при различных инфекционных заболеваниях (нагноительные процессы, менингиты, анаэробная инфекция, брюшной и сыпной тиф, туберкулез, детские инфекции и др.).

Однако следует указать и некоторое побочное и нежелательное их влияние.

При неправильном применении антибиотиков (маленькие дозы, кратковременное лечение) могут появиться устойчивые к данному антибиотику формы микробов-возбудителей. Вследствие этого для медицинской практики имеет большое значение определение чувствительности возбудителя инфекционного заболевания к тому или другому антибиотику.

Имеются 2 способа определения чувствительности выделяемых микробов к антибиотикам

1) метод серийных разведений

2) метод диффузии.

Первый метод более сложный и заключается в следующем: в ряд пробирок с 2 мл бульона наливают кратные разведения антибиотика, затем в каждую пробирку засевают 0,2 мл (выдержанной 18-ти часовой) бульонной культуры испытуемого микроба; пробирки помещают в термостат на 16—18 часов. Последняя пробирка, где отсутствует рост микробов, и определяет степень чувствительности микроба к данному антибиотику.

Более простым методом является метод диффузии . Для этой цели в лабораториях имеется набор специальных дисков из фильтровальной бумаги, пропитанных растворами разных антибиотиков. Делают посев выделенной культуры на чашку Петри, с мясопептонным агаром. Накладывают эти диски на засеянную поверхность.

Чашки помещают в термостат на 24—48 часов, после чего отмечают результат.

К другим осложнениям при применении антибиотиков относится снижение иммунологической реактивности. В этом случае иногда наступают рецидивы заболевания, например при брюшном тифе.

При слишком длительном приеме антибиотиков и в больших дозах часто наблюдаются токсические явления. У некоторых больных прием того или другого антибиотика вызывает аллергическую реакцию в виде высыпаний на коже, рвоты и т. д.

В отдельных случаях в результате длительного применения биомицина, левомицетина, синтомицина возможно угнетение нормальной микрофлоры человека, что ведет за собой активизацию условно патогенных микробов, обитающих на слизистых оболочках полости рта или кишечника: энтерококка, дрожжеподобных микроорганизмов и др. Эта флора в ослабленном организме может вызвать различного характера заболевания (кандидозы и др.). Все это свидетельствует о том, что медицинские работники должны применять антибиотики, строго руководствуясь существующими указаниями и инструкциями, наблюдая тщательно за состоянием больного, ив случае необходимости прекратить лечение его антибиотиками или заменить данный препарат другим.

Перечисленные осложнения не снижают ценности антибиотиков как лечебных препаратов. Благодаря антибиотикам медицинские работники в настоящее время имеют специфические лекарственные средства для лечения большинства инфекционных заболеваний.

Микроорганизмы есть везде, можно сказать - всегда. На данный момент подсчитано, что возраст Земли насчитывает около 4,6 миллиарда лет. Океаны появились около 4,4 миллиарда лет назад. Затем на Земле появились первые бактериальные клетки. Чтобы представить себе, как это долго - только в последние 500 миллионов лет развивалась жизнь в форме, напоминающей нынешние формы.

Таким образом, микроорганизмы составляют многочисленную группу организмов, без которых не обошлось открытие антибиотиков - и дальнейшее совершенствование их форм не было бы возможно. Открытие и введение этих веществ естественного происхождения для лечения инфекционных заболеваний человека, положило начало новой эпохе - спасения жизни и здоровья миллионов людей по всему миру.

История исследований

В научных исследованиях можно найти информацию о том, что микроорганизмы окружающей среды - имеют антибиотические свойства. Уже в древности интуитивно считалось, что существуют в природе вещества, которые помогают в лечении многих заболеваний, в частности инфекций. Есть также доказательства, что люди, еще тогда, пытались использовать антибиотики природного происхождения для лечения различных заболеваний. Следы тетрациклина - для примера, были найдены в останках костей человека в районе Нуби (исторической земли расположенной в настоящее время на территории южного Египта и северного Судана), датируется началом нашей эры (350 - 550).

Другим примером применения антибиотиков в древние времена, является утверждение их присутствия при анализе гистологических образцов, взятых из тела бедренной кости скелета времен Римской Империи, в Ливийской пустыне в Египте. В исследуемых образцах было выявлено наличие тетрациклина. Тот факт, что эти вещества попали в кости, доказывает, что в рационе древних цивилизаций находились вещества богатые на антибиотики природного происхождения. Есть также упоминания, что более 2000 лет назад заплесневелый хлеб в Китае, Греции, Сербии, Египте использовался для лечения некоторых патологических состояний, в частности, при плохо заживающих и инфицированных ранах. Тогда действия природных антибиотиков воспринимались как влияние духов или богов, ответственных за болезни и страдания.

В России существовали подобные применения. Медики давали больным пациентам пиво, смешанное с оболочками черепов и кожей змеи, а вавилонские врачи вылечили больному глаза, используя смесь желчи лягушки и кислого молока. В XVII веке, промывали раны смесью на базе пшеничного хлеба с плесенью. Однако научные размышления над специфическими свойствами микроорганизмов начались лишь в конце XIX века.

В 1870 году в Англии Сэр Джон Скотт Бурдон-Сандерсон начал наблюдения над свойствами плесени. Год спустя, Джозеф Листер экспериментировал с влиянием того, что он назвал Penicillium glaucium на ткани человека. Последовательно, в 1875 году Джон Тинделл пояснил антибактериальное действие гриба Penicillium на страницах Royal Society. Во Франции в 1877 году Луи Пастер провел тезис о том, что бактерии могут убивать другие бактерии. 20 лет спустя, в 1897 году Эрнест Дюшен, на защите диссертации "Антагонизм между плесенью и микроорганизмами", констатировал факт наличия веществ, которые могут привести к подавлению размножения некоторых патогенных бактерий. Дальнейшие исследования плесени и микробов были прерваны в связи со смертью, вызванной туберкулезом ученого.

В 1899 году Рудольф Эммерих и Оскар Лев описали в статье результаты своей работы с микроорганизмами. Они доказали, что бактерии, которые являются источниками одной болезни, могут быть выходом и лечением для другой болезни. Они вели примитивное исследование, применяя зараженные бактериями (Bacillus pyocyaneus - в настоящее время Pseudomonas aeruginosa) бинты. Образцы из этих используемых штаммов бактерий были в состоянии устранить другие штаммы. Из этих экспериментов Эммерих и Лев создали препарат, основанный на штаммах бактерий B. pyocyaneus, который назвали pyocyanase. Это был первый антибиотик для применения в больницах. К сожалению, его эффективность была низкой. Кроме того, наличие большого количества акридизина (вещество токсичное для человека), повлияло на факт прекращения применения данного препарата.

Изобретатель антибиотиков

Важной вехой и, одновременно, началом настоящей эры антибиотиков был 1928 год. Тогда изобретатель антибиотиков Александр Флеминг - шотландский бактериолог, исследователь (1922) - открыл белок со свойствами антисептика, после возвращения из отпуска, случайно обратил внимание на странные аномалии, которые произошли на чашке с колониями Золотистого стафилококка, предназначенной для утилизации. Его внимание привлекла голубая плесень (Penicillium notatum) и связанное с этим интересное наблюдение, что фрагмент на питательной среде колоний бактерий, рос в пространстве, что окружает мицелий, подвергаясь дезинтеграции. Тогда он начал разведение плесени, одновременно начал проводить исследования для того, чтобы использовать плесень в борьбе с патогенами. Исследования продолжались достаточно долго. Спустя 10 лет уже в 1939 году Говард Флори, Эрнст Чейн и Норман Хитл внедрили в производство пенициллин.

Сначала пенициллин производили на нескольких чашках, но со временем они внедрили масштабную промышленность данного вещества. Да, именно антибиотик под названием пенициллин вошел в клиническую практику в 1940 году. Пенициллин начали использовать во время боевых действий в Северной Африке, в 1943 году. Доступен он был в форме кальциевой соли (CaPn) в виде порошка, который представлял собой смесь CaPn и сульфонамиды. Применяли его для засыпки ран, в виде мазей, а также в чистом виде, предназначенном для приготовления растворов для промывания полостей тела и ран, а также в виде таблеток натриевой соли (NaPn), которые после преобразования в волокнистую солевую массу предназначались для инъекций. Вначале на фронт попадали ограниченные ресурсы данного антибиотика, кроме того, детально документировалось каждое его использование. Применяли его, в частности, для лечения газовой гангрены, тяжелых ран грудной клетки с повреждением внутренних органов, ран головы и сложных, открытых ран, при повреждениях суставов. Его использовали также для лечения тяжелых форм воспаления легких, менингита и септицемии - после предварительной проверки на чувствительность бактерий которые вызвали эти инфекции, к пенициллину. В более поздний период, когда на фронт попадало больше препарата, его использовали также для лечения гонореи.

Развитие и проведение дальнейших анализов

Еще один ученый, который навсегда вошел в историю как первооткрыватель антибиотиков, полученных из микроорганизмов - Сельман Ваксман. Это он первым употребил название "антибиотик" (anti - против и biotikos - жизненный) - химическое вещество, вырабатываемое бактериями, обладает способностью убивать или задерживать рост других микроорганизмов. Ваксман, еще, будучи студентом, систематически брал пробы грунта с территории своего учебного заведения и занимался наблюдением роста различных микроорганизмов. Во время своих долго продолжающихся исследований отметил возникновение колоний микробов, количество которых зависит от типа почвы, рн, глубины добычи и назначения грунта. Эти открытия повлияли на тот факт, что этот человек на постоянной основе занялся разведением грамм-положительных бактерий. Следствием долгих исследований Ваксмана, в дальнейшем стало открытие стрептомицина, его учеником - Альбертом Шатцом.

Он отметил, что Streptomyces griseus (S. griseus) производит связь активности в отношении грамотрицательных бактерий и микобактерий туберкулеза. Стрептомицин был самым важным открытием с момента открытия пенициллина. Благодаря этому началась эффективная борьба с туберкулезом. Открытия первых антибиотиков дало толчок для проведения дальнейших анализов и изготовления многих новых веществ. В связи с этим, период между 1950 и 1970 годом стал поистине «золотой эрой» открытий новых классов антибиотиков. Из числа многочисленных препаратов, в которых предшественниками были вещества, вырабатываемые микроорганизмами, следует отметить, в частности, те, что относятся к классам b-лактамов, аминогликозидов или тетрациклинов.

Заключение

Как видно из приведенных выше кратких сведений, микроорганизмы дали начало великим открытиям, но с момента введения массового производства антибиотиков, их применение в медицине и в других областях, к сожалению, показало сопротивление организма на несколько классов антибиотиков. Однако фактом является то, что в настоящее время это глобальная проблема и огромная опасность современной медицины.

Несмотря на большой прогресс, который наблюдается в области генетики, микробиологии или молекулярной биологии, еще нет достаточных знаний о механизмах, ответственных за устойчивость к антибиотикам. Не определенно, какие факторы отвечают за устойчивость к антибиотикам и не известно, какие барьеры ограничивают передачу таких генов другим видам микроорганизмов.

С того момента, когда Александр Флеминг открыл антибиотик, прошло почти 100 лет. Этот период можно назвать временем большого развития фармацевтической промышленности, богатого на новые лекарственные препараты для лечения многих болезней, которые совсем недавно считались неизлечимыми. Не было бы всего этого без маленьких микроорганизмов, которые стали великими союзниками человечества.

Большинство доступных сегодня препаратов было обнаружено во время так называемой «золотой эры» антибиотиков. Еще недавно казалось, что с концом этого периода возможности поиска новых бактерий прошли уже все возможные способы. Ничего более далекого от истины - в настоящее время уже известно, что существуют еще большие залежи непроверенных микроорганизмов. Есть много "фабрик", где возможно есть потенциал альтернативных веществ в терапии различных заболеваний. До сих пор продолжаются активные поиски новых мест обитания микроорганизмов, а также новых методов, способов и возможностей их привлечения и разведения. Подсчитано, что к настоящему времени удалось выделить и охарактеризовать только 1% всех антимикробных соединений, которые вырабатываются в природе, и только 10%, естественно, производимых антибиотиков.

Александра Флеминга считают изобретателем первого из антибиотиков - пенициллина. При этом ни он сам, ни другие люди, так или иначе участвовавшие в создании антибиотиков, не претендуют на авторство, искренне считая, что открытие, спасающее жизни, не может быть источником дохода.

Мы привыкли ко многим вещам, изобретение которых когда-то потрясло мир и перевернуло быт. Мы не удивляемся стиральным машинам, компьютерам, настольным лампам. Нам даже трудно представить, как жили люди без электричества, освещая дома керосиновыми лампами или лучинами. Предметы окружают нас, и мы привыкли не замечать их ценности.

Наш сегодняшний рассказ посвящен не предметам быта. Это рассказ о средствах, к которым мы тоже привыкли и уже не ценим того, что они спасают самое ценное — жизнь. Нам кажется, что антибиотики существовали всегда, но это не так: еще во время Первой мировой войны солдаты умирали тысячами, потому что мир не знал пенициллина, и врачи не могли сделать спасительные уколы.

Воспаление легких, сепсис, дизентерия, туберкулез, тиф — все эти болезни считались либо неизлечимыми, либо почти неизлечимыми. В 30-ых годах ХХ (двадцатого!) века больные очень часто умирали от послеоперационных осложнений, главными из которых было воспаление ран и дальнейшее заражение крови. И это при том, что мысль об антибиотиках была высказана еще в XIX веке Луи Пастером (1822-1895).

Этот французский микробиолог открыл, что бактерии сибирской язвы погибают под действием некоторых других микробов. Однако его открытие не дало готового ответа или рецепта, скорее, поставило перед учеными множество новых вопросов: какие микробы «воюют», чем один побеждает другого... Конечно, чтобы выяснить это, пришлось бы проделать огромную работу. Видимо, такой пласт работы был неподъемным для ученых того времени. Однако ответ был совсем близко, с самого начала жизни на Земле...

Плесень. Такая знакомая и привычная плесень, тысячи лет живущая рядом с человеком, оказалась его защитником. Этот грибок, витающий в воздухе в виде спор, стал предметом спора между двумя русскими врачами в 1860-ых годах.

Незамеченное открытие

Алексей Полотебнов и Вячеслав Манассеин не сошлись во взглядах на природу плесени. Полотебнов считал, что от плесени пошли все микробы, то есть плесень есть прародитель микроорганизмов. Манассеин возражал ему. С целью доказать свою правоту последний начал исследование зеленой плесени (по-латыни penicillium glaucum). Спустя какое-то время врач имел счастье наблюдать интересный эффект: там, где был плесневой грибок, не было бактерий. Вывод следовал только один: каким-то образом плесень не позволяет развиваться микроорганизмам. Оппонент Манассеина Полотебнов тоже пришел к такому выводу: по его наблюдениям, жидкость, в которой образовывалась плесень, оставалась чистой, прозрачной, что свидетельствовало только об одном — бактерий в ней нет.

К чести проигравшего в научном споре Полотебнова, он продолжил свое исследование уже в новом русле, использовав плесень в качестве бактерицидного средства. Он создал эмульсию с плесневым грибком и спрыскивал ею язвы больных кожными заболеваниями. Результат: обработанные язвы заживали раньше, чем если бы остались без лечения. Конечно, как врач Полотебнов не мог оставить открытие втайне и рекомендовал такой способ лечения в 1872 году в одной из своих статей. К сожалению, его наблюдения наука обошла вниманием, и врачи всего мира продолжали лечить больных средствами времен мракобесия: кровопусканием, порошками из высушенных животных и насекомых и прочей бессмыслицей. Эти «средства» считались лечебными и использовались даже в начале прогрессивного ХХ века, когда братья Райт испытывали свои первые самолеты, а Эйнштейн работал над теорией относительности.

Убрать на столе - похоронить открытие

Статья Полотебнова осталась без внимания, и целых полвека никто из ученых не предпринимал новых попыток изучения плесневого грибка. Исследования Полотебнова и их результаты «воскресли» уже в начале ХХ века благодаря счастливой случайности и микробиологу, который не любил убирать на своем столе…

Шотландец Александр Флеминг, которого считают создателем пенициллина, с самой юности мечтал найти средство, уничтожающее болезнетворные бактерии. Он упорно занимался микробиологией (в частности - изучал стафилококки) в своей лаборатории, которая располагалась в одном из госпиталей Лондона и представляла собой тесную комнатушку. Помимо упорства и самоотверженности в работе, не раз отмеченные его коллегами, Флеминг обладал еще одним качеством: он не любил наводить порядок на своем столе. Склянки с препаратами иногда стояли на столе микробиолога неделями. Благодаря этой своей привычке Флемингу и удалось буквально наткнуться на великое открытие.

Однажды ученый оставил колонию стафилококков без внимания на несколько дней. А когда решил их убрать, то обнаружил, что препараты покрылись плесенью, споры которой, по-видимому, проникли в лабораторию через открытое окно. Флеминг не только не выбросил испортившийся материал, но и изучил его под микроскопом. Ученый был поражен: от болезнетворных бактерий не осталось и следа - только плесень и капли прозрачной жидкости. Флеминг решил проверить, действительно ли плесень способна убивать опасные микроорганизмы.

Микробиолог вырастил грибок в питательной среде, «подселил» к нему другие бактерии и поместил чашку с препаратами в термостат. Результат был поразительным: между плесенью и бактериями образовались пятна, светлые и прозрачные. Плесень «огораживала» себя от «соседей» и не давала им размножаться.

Что же это за жидкость, которая образуется возле плесени? Этот вопрос не давал покоя Флемингу. Ученый приступил к новому эксперименту: вырастил плесень в большой колбе и стал наблюдать за ее развитием. Цвет плесени менялся 3 раза: из белого в зеленый, а затем она стала черной. Питательный бульон тоже менялся - из прозрачного он стал желтым. Вывод напрашивался сам собой: плесень выделяет в окружающую среду какие-то вещества. Осталось проверить, обладают ли они столь же «убийственной» силой.

Эврика!

Жидкость, в которой жила плесень, оказалась еще более мощным средством массового поражения бактерий. Даже разведенная водой в 20 раз, она не оставляла бактериям никакого шанса. Флеминг забросил свои прошлые исследования, посвятив все мысли только этому открытию. Он выяснял, на какой день роста, на какой питательной среде, при какой температуре грибок проявляет наибольшее антибактериальное воздействие. Он выяснил, что жидкость, выделенная грибком, воздействует только на бактерии и безвредна для животных. Он назвал эту жидкость пенициллином.

В 1929 году Флеминг рассказал о найденном лекарстве в Лондонском медицинском научно-исследовательском клубе. Его сообщение осталось без внимания - так же, как когда-то статья Полотебнова. Однако шотландец оказался более упрямым, чем русский врач. На всех конференциях, выступлениях, собраниях врачей Флеминг так или иначе упоминал открытое им средство для борьбы с бактериями. Однако была еще одна проблема - нужно было как-то выделить чистый пенициллин из бульона, при этом не разрушив его.

Труды и награды

Выделить пенициллин - эта задача решалась не один год. Флеминг со товарищи предприняли не один десяток попыток, однако в чужой среде пенициллин разрушался. Врачи-микробиологи не могли решить эту задачу, здесь требовалась помощь химиков.

Информация от новом лекарстве постепенно достигла Америки. Спустя 10 лет после первого заявления Флеминга о пенициллине, этим открытием заинтересовались двое английских ученых, которых судьба и война забросила в Америку. В 1939 году Говард Флери, профессор патологии одного из оксфордских институтов, и Эрнст Чейн, биохимик, бежавший из Германии, искали тему для совместной работы. Их заинтересовал пенициллин, точнее, задача его выделения. Она и стала темой их работы.

В Оксфорде оказался штамм (культура микробов), который когда-то прислал Флеминг, поэтому у ученых был материал для работы. В результате долгих, трудных исследований и опытов Чейну удалось получить кристаллы калийной соли пенициллина, которые он затем превратил в слизистую массу, а потом - в коричневый порошок. Гранулы пенициллина были очень мощными: разведенные в пропорции один на миллион, они убивали бактерии через несколько минут, однако были безвредны для мышей. Опыты проводились на мышах: их заражали убойными дозами стрептококков и стафилококков, а затем спасали жизнь половине из них, вводя пенициллин. Опыты Чейна привлекли еще нескольких ученых. Было установлено, что пенициллин также убивает и возбудителей гангрены.

На человеке пенициллин был опробован в 1942 году и спас жизнь умирающему от менингита. Этот случай произвел большое впечатление на общество и врачей. В Англии наладить производство пенициллина не удалось из-за войны, поэтому в 1943 году производство открылось в Америке. В том же году американское правительство сделало заказ на 120 млн. единиц препарата. В 1945 году Флери и Чейн получили Нобелевскую премию за выдающееся открытие. Сам же Флеминг удостаивался различных званий и наград десятки раз: был удостоен рыцарского звания, 25 почетных степеней, 26 медалей, 18 премий, 13 наград и почетного членства в 89 академиях наук и научных обществах. На могиле ученого - скромная надпись: «Александр Флеминг - изобретатель пенициллина».

Изобретение, принадлежащее человечеству

Поисками средства для борьбы с бактериями ученые всего мира искали с тех самых пор, как узнали об их существовании и смогли разглядеть в микроскоп. С началом Второй мировой войны необходимость в этом средстве назрела как никогда. Неудивительно, что в Советском Союзе тоже работали над этим вопросом.

В 1942 году профессор Зинаида Ермольева получила пенициллин из плесени пенициллиум крустозум, взятой со стены одного из бомбоубежищ Москвы. В 1944 году Ермольева, после долгих наблюдений и исследований, решила испытать свой препарат на раненых. Ее пенициллин стал чудом для полевых врачей и спасительным шансом для многих раненых бойцов. В том же году в СССР было налажено производство пенициллина.

Антибиотики - это большая «семья» средств, а не только пенициллин. Некоторые из его «сородичей» были открыты в военные годы. Так, в 1942 году Гаузе получил грамицидин, а в 1944-ом - американец украинского происхождения Ваксман выделил стрептомицин.

Полотебнов, Флеминг, Чейн, Флери, Ермольева, Гаузе, Ваксман - эти люди своими трудами подарили человечеству эпоху антибиотиков. Эпоху, когда менингит или воспаление легких не становятся приговором. Пенициллин так и остался незапатентованным: никто из его создателей не претендовал на авторство средства, спасающего жизни.

Похожие статьи