Что называется механическим движением: определение и формула. Что такое механическое движение: определение перемещения в физике

30.09.2019

Механическое движение тела - это изменение его положения относительно других тел в выбранной системе отсчета, при этом изменение положения тела происходит за какой-либо промежуток времени.

Система отсчета предполагает наличие в ней тела отсчета, начала (точки) отсчета на этом теле, имеющего нулевую координату и как минимум одну ось координат. Например, пусть телом отсчета будет шоссе, началом отсчета некий столб около него. Координатная ось будет тянуться вдоль шоссе; направо от нуля будет ее положительное направление, налево - отрицательное. В 500-х метрах от столба в положительном направлении оси пусть находится бензоколонка.

Допустим, по шоссе едет автобус в сторону бензоколонки. Если за точку отсчета принять столб, то по отношению к нему автобус совершает механическое движение, так как расстояние между ними меняется. А вот бензоколонка в выбранной системе отсчета не совершает движения (ее расстояние до столба не меняется).

Теперь в качестве системы отсчета выберем автобус, на нем будет находиться начало отсчета. Расстояние между ним и бензоколонкой меняется; допустим, автобус к ней подъезжает. Теперь можно сказать, что бензоколонка меняет свое положение относительно автобуса, а это значит, что она совершает механическое движение.

Получается, что в одной системе отсчета (автобус) тело совершает механическое движение, а в другой (шоссе) - нет. Поэтому и говорят, что механическое движение относительно . Под его относительностью имеют в виду, что оценить наличие механического движения можно лишь указав конкретную систему отсчета.

Кроме того, скорость механического движения тела зависит от выбранной системы отсчета. Пусть относительно столба на шоссе: автобус едет со скоростью 60 км/ч, а рядом с ним в том же направлении проезжает автомобиль со скоростью 100 км/ч. Какова скорость автомобиля, если в качестве системы отсчета принять автобус? Через час автомобиль удалится от автобуса всего на 40 км, значит, скорость автомобиля в системе отсчета, связанной с автобусом, равна 40 км/ч.

Рассмотрим человека, сидящего в автобусе. По отношению к столбу на шоссе он двигается также, как все части автобуса. Если в качестве начала отсчета выбрать какое-либо место в самом автобусе, то сидящий человек не совершает никакого механического движения, т. е. покоится. В данном случае мы опять имеем дело с относительностью механического движения.

Пусть человек в автобусе встал и начал перемещаться по нему. Теперь он совершает механическое движение и в системе отсчета, связанной с автобусом. Однако скорость человека по отношению к столбу на шоссе, и выбранной точке отсчета в автобусе будет различной.

Механическим движением тела называют измене­ние его положения в пространстве относительно других тел с течением времени. Например, человек, едущий на эскалато­ре в метро, находится в покое относительно самого эскалатора и перемещается относительно стен тунне­ля

Виды механического движения:

  • прямолинейные и криволинейные — по форме траектории;
  • равномерные и неравномерные — по закону движения.

Механическое движение относительно. Это проявляется в том, что форма траектории, перемещение, скорость и другие характеристики движения тела зависит от выбора системы отсчета.

Тело, относительно которого рассматривается движение, называется телом отсчета . Система ко­ординат, тело отсчета, с которым она связана, и прибор для отсчета времени образуют си­стему отсчета , относительно которой и рассматривается движение тела.

Иногда размерами тела по сравнению с расстоянием до него можно пренебречь. В этих случаях тело считают материальной точкой.

Определение положения тела в любой момент времени является основной задачей механики .

Важными характеристиками движения являются траектория материальной точки, перемещение, скорость и ускорение. Линию, вдоль которой движется материальная точка, называют траекторией . Длина траектории называется путем (L). Единица измерения пути - 1м. Вектор, соединяющий начальную и конечную точки траектории, называется перемещением (). Единица изме­рения перемещения-1м .

Простейший вид движения равномерное прямолинейное движение. Движение, при котором тело за любые равные промежутки вре­мени совершает одинаковы перемещения, назы­вают прямолинейным равномерным движением. Скорость () - векторная физическая величина, характеризующая быстроту перемещения тела, чис­ленно равная отношению перемещения за малый промежуток времени к величине этого промежутка. Определяющая формула скорости имеет вид v = s/t . Единица изме­рения скорости - м/с . Измеряют скорость спидометром.

Движение тела, при котором его скорость за любые промежутки времени изменяется одинаково, называют равноуско­ренным или равнопеременным.

физическая величина, характеризующая быстроту изменения скорости и численно равная отношению вектора изменения скорости за единицу времени. Единица ускорения в СИм/с 2 .

равноускоренным , если модуль скорости возрастает.— условие равноускоренного движения. Например, разгоняющиеся транспортные средства- автомобили, поезда и свободное падение тел вблизи поверхности Земли ( = ).

Равнопеременное движение называется равнозамедленным , если модуль скорости уменьшается. — условие равнозамедленного движения.

Мгновенная скорость равноускоренного прямолинейного движения

Сегодня мы поговорим о систематическом изучении физики и первом ее разделе - механике. Физика изучает разные виды изменений или процессов, происходящих в природе, а какие процессы в первую очередь интересовали наших предков? Конечно, это процессы, связанные с движением. Им было интересно, долетит ли копье, которое они бросили, и попадет ли оно в мамонта; им было интересно, успеет ли гонец с важной вестью добежать до заката к соседней пещере. Все эти виды движения и вообще механическое движение как раз и изучает раздел, который называется механика.

Куда бы мы ни посмотрели - вокруг нас масса примеров механического движения: что-то вращается, что-то прыгает вверх-вниз, что-то движется вперед-назад, а другие тела могут находиться в состоянии покоя, которое тоже является примером механического движения, скорость которого равна нулю.

Определение

Механическим движением называется изменение положения тел в пространстве относительно других тел с течением времени (рис. 1).

Рис. 1. Механическое движение

Как физика делится на несколько разделов, так и механика имеет свои разделы. Первый из них называется кинематика. Раздел механики кинематика отвечает на вопрос, как движется тело. Прежде чем начать работать над изучением механического движения, необходимо определить и выучить основные понятия, так называемую азбуку кинематики. На уроке мы научимся:

Выбирать систему отсчета для изучения движения тела;

Упрощать задачи, мысленно заменяя тело материальной точкой;

Определять траекторию движения, находить путь;

Различать виды движений.

В определении механического движения особое значение имеет выражение относительно других тел . Нам всегда необходимо выбрать так называемое тело отсчета, то есть тело, относительно которого мы будем рассматривать движение исследуемого нами объекта. Простой пример: подвигайте рукой и скажите - движется ли она? Да, конечно, по отношению к голове, но по отношению к пуговице на вашей рубашке она будет недвижима. Поэтому выбор отсчета очень важен, ведь относительно некоторых тел движение совершается, а относительно других тел движения не происходит. Чаще всего телом отсчета выбирают тело, которое всегда есть под руками, точнее под ногами, - это наша Земля, которая является телом отсчета в большинстве случаев.

Издавна ученые спорили о том, Земля ли вращается вокруг Солнца или Солнце вращается вокруг Земли. На самом деле, с точки зрения физики, с точки зрения механического движения это всего лишь спор о теле отсчета. Если телом отсчета считать Землю, то да - Солнце вращается вокруг Земли, если телом отсчета считать Солнце - то Земля вращается вокруг Солнца. Поэтому тело отсчета - это важное понятие.

Как же описывать изменение положения тела?

Чтобы точно задать положение интересующего нас тела относительно тела отсчета, надо связать с телом отсчета систему координат (рис. 2).

При движении тела координаты меняются, а для того чтобы описать их изменение, нам необходим прибор для измерения времени. Чтобы описывать движение, нужно иметь:

Тело отсчета;

Связанную с телом отсчета систему координат;

Прибор для измерения времени (часы).

Все эти объекты составляют вместе систему отсчета. До тех пор пока мы не выбрали систему отсчета, не имеет смысла описывать механическое движение - мы не будем уверены в том, как движется тело. Простой пример: чемодан, лежащий на полке в купе поезда, который движется, для пассажира просто покоится, а для человека, стоящего на перроне, движется. Как мы видим, одно и то же тело и движется, и покоится, вся проблема в том, что системы отсчета различны (рис. 3).

Рис. 3. Различные системы отчета

Зависимость траектории от выбора системы отсчета

Ответим на интересный и важный вопрос, зависит ли форма траектории и пройденный телом путь от выбора системы отсчета. Рассмотрим ситуацию, когда есть пассажир поезда, радом с которым на столе стоит стакан с водой. Какой же будет траектория стакана в системе отчета, связанной с пассажиром (телом отсчета является пассажир)?

Конечно, относительно пассажира стакан неподвижен. Это значит, что траектория является точкой, а перемещение равно (рис. 4).

Рис. 4. Траектория стакана относительно пассажира в поезде

Какой же будет траектория стакана относительно пассажира, который ожидает поезда на перроне? Для этого пассажира будет казаться, что стакан движется по прямой линии и у него ненулевой путь (рис. 5).

Рис. 5. Траектория стакана относительно пассажира на перроне

Из вышесказанного можно сделать вывод, что траектория и путь зависят от выбора системы отсчета.

Для того чтобы описывать механическое движение, в первую очередь необходимо определиться с системой отсчета.

Движение изучается нами для того, чтобыпредсказать, где окажется тот или иной объект в необходимый момент времени. Основная задача механики - определить положение тела в любой момент времени. Что же значит описать движение тела?

Рассмотрим пример: автобус едет из Москвы в Санкт-Петербург (рис. 6). Важны ли нам размеры автобуса по сравнению с расстоянием, которое он преодолеет?

Рис. 6. Движение автобуса из Москвы в Санкт-Петербург

Конечно же, размерами автобуса в данном случае можно пренебречь. Мы можем описывать автобус как одну движущуюся точку, по-другому ее называют материальной точкой.

Определение

Тело, размерами которого в данной задаче можно пренебречь, называют материальной точкой.

Одно и то же тело, в зависимости от условий задачи, может быть или не быть материальной точкой. При перемещении автобуса из Москвы в Санкт-Петербург автобус можно считать материальной точкой, ведь его размеры несопоставимы с расстоянием между городами. Но если в салон автобуса влетела муха и мы хотим исследовать ее движение, тогда в этом случае нам важны размеры автобуса, и он уже не будет являться материальной точкой.

Чаще всего в механике мы будем изучать именно движение материальной точки. При своем перемещении материальная точка последовательно проходит положение вдоль некоторой линии.

Определение

Линия, вдоль которой движется тело (или материальная точка), называется траекторией движения тела (рис. 7).

Рис. 7. Траектория точки

Иногда мы наблюдаем траекторию (например, процесс выставления оценки за урок), но чаще всего траектория - это какая-то воображаемая линия. При наличии средств измерения мы можем замерить длину траектории, вдоль которой двигалось тело, и определим величину, которая называется путь (рис. 8).

Определение

Путь , пройденный телом за некоторое время, - это длина участка траектории .

Рис. 8. Путь

Разделяют два основных вида движения - это прямолинейное и криволинейное движение.

Если траектория тела - это прямая линия, то движение называется прямолинейным. Если тело движется по параболе или по любой другой кривой - мы говорим о криволинейном движении. При рассмотрении движения не просто материальной точки, а движения реального тела различают еще два вида движения: поступательное движение и вращательное движение.

Поступательное и вращательное движение. Пример

Какие же движения называются поступательными, а какие - вращательными? Рассмотрим этот вопрос на примере колеса обозрения. Как движется кабина колеса обозрения? Отметим две произвольные точки кабины и соединим их прямой. Колесо вращается. Через некоторое время отметим те же точки и соединим их. Полученные прямые будут лежать на параллельных прямых (рис. 9).

Рис. 9. Поступательное движение кабины колеса обозрения

Если прямая, проведенная через любые две точки тела, при движении остается параллельной сама себе, то такое движение называют поступательным .

В противном случае мы имеем дело с вращательным движением. Если бы прямая не была параллельной сама тебе, то пассажир, скорее всего, вывалился бы из кабины колеса (рис. 10).

Рис. 10. Вращательное движение кабины колеса

Вращательным называют такое движение тела, при котором его точки описывают окружности, лежащие в параллельных плоскостях. Прямая, соединяющая центры окружностей, называется осью вращения .

Очень часто нам приходится сталкиваться с комбинацией поступательного и вращательного движения, так называемым поступательно-вращательным движением. Самый простой пример такого движения - это движение прыгуна в воду (рис. 11). Он выполняет вращение (сальто), но при этом центр его масс поступательно движется в направлении воды.

Рис. 11. Поступательно-вращательное движение

Мы сегодня изучили азбуку кинематики, то есть основные, самые важные понятия, которые в дальнейшем позволят нам перейти к решению главной задачи механики - определению положения тела в любой момент времени.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.
  1. Интернет-портал «Av-physics.narod.ru» ().
  2. Интернет-портал «Rushkolnik.ru» ().
  3. Интернет-портал «Testent.ru» ().

Домашнее задание

Подумайте, что является телом отсчета, когда мы говорим:

  • книга неподвижно лежит на столике в купе движущегося поезда;
  • стюардесса после взлета проходит по пассажирскому салону самолета;
  • Земля вращается вокруг своей оси.

Одним из самых простых физических явлений является механическое движение тел. Кто из вас не наблюдал, как движется автомобиль, летит самолет, идут люди и т. д.! Если, однако, спросить, движется ли сейчас здание, в котором вы находитесь, вы, наверное, ответите, что нет. И будете не правы!

А движется ли сейчас самолет, который вы видите в небе? Если вы уверены, что он движется, то снова заблуждаетесь! Но если вы скажете, что он покоится, то и в этом случае ваш ответ не будет верным.

Как же определить, движется то или иное тело или нет? Для этого нужно сначала понять, что такое механическое движение.

Механическим движением тела называется процесс изменения его положения относительно какого-либо другого тела, выбранного за тело отсчета.

Тело отсчета - это тело, относительно которого рассматривается положение остальных тел. Тело отсчета выбирают произвольно. Это может быть что угодно: Земля, здание, автомобиль, теплоход и т. д.

Чтобы судить о том, движется тело (например, самолет) или нет, надо сначала выбрать тело отсчета, а затем посмотреть, меняется ли положение рассматриваемого тела относительно выбранного тела отсчета. При этом тело может двигаться относительно одного какого-либо тела отсчета и одновременно с этим не двигаться по отношению к другому телу отсчета.

Например, человек, сидящий в поезде, движется относительно полотна железной дороги, но находится в покое относительно вагона поезда. Лежащий на земле камень покоится относительно Земли, но движется (вместе с Землей) относительно Солнца. Самолет в небе движется относительно облаков, но покоится относительно сидящего в кресле пилота.
Вот почему, не указав тело отсчета, нельзя говорить о том, движется данное тело или нет. Без указания тела отсчета любой данный вами ответ будет лишен смысла.

Покоится ли здание, в котором вы сейчас находитесь? Ответ на этот вопрос зависит от выбора тела отсчета. Если телом отсчета является Земля, то да, покоится. Но если телом отсчета является проезжающий мимо здания автомобиль, то относительно него здание будет двигаться.

Какую роль играют размеры тела при описании его движения? В некоторых случаях без указания размеров тела и его частей обойтись нельзя. Когда, например, автомобиль въезжает в гараж, то размеры гаража и автомобиля для его владельца будут играть достаточно важную роль. Но есть и много таких ситуаций, когда размеры тела неважны. Если, например, тот же автомобиль движется из Москвы в Санкт-Петербург и требуется рассчитать время движения автомобиля, то нам будет безразлично, каковы у него размеры.

Если размеры тела много меньше расстояний, характерных для рассматриваемого в задаче движения, то размерами тела пренебрегают и тело представляют в виде материальной точки . Словом «материальная» подчеркивается ее отличие от геометрической точки. Геометрическая точка не обладает никакими физическими свойствами. Материальная же точка может обладать массой, электрическим зарядом и некоторыми другими характеристиками.

В современной механике (теория движения тел) материальные точки иначе называют частицами . Мы в дальнейшем будем использовать оба эти термина. Иногда, говоря о механическом движении частиц, мы будем использовать термин «тело», но при этом не следует забывать, что это тело рассматривается в таких условиях, когда его можно принять за материальную точку.

Перемещаясь из одного места в другое, частица (или материальная точка) движется по некоторой линии. Линию, по которой движется частица, называют траекторией .

Траектории могут иметь разную форму. О форме траектории иногда удается судить по видимому следу, оставляемому движущимся телом. Такие следы иногда оставляют пролетающие самолеты или проносящиеся в ночном небе метеоры (рис. 8). Форма траектории зависит от выбора тела отсчета. Например, относительно Земли траектория движения Луны представляет собой окружность, а относительно Солнца - линию более сложной формы (рис. 9).
В дальнейшем движение всех тел (если не оговорено противоположное) мы будем рассматривать относительно Земли.

Траектории движения разных тел могут отличаться друг от друга не только формой, но и длиной.

Длина траектории, по которой двигалось тело, называется пройденным путем .

На рисунке 10 штриховой линией показана траектория лыжника, прыгающего с трамплина. Длина траектории ОА есть путь, пройденный лыжником за время спуска с горы.

Когда измеряют путь, пользуются единицей пути. Единицей пути является единица длины - метр (1 м). На практике используются и другие единицы длины, например:

1 км = 1000 м, 1 дм = 0,1 м, 1 см = 0,01 м, 1 мм = 0,001 м.

1. Что такое механическое движение? 2. Какое тело называют телом отсчета? 3. Почему нужно указывать, относительно какого тела отсчета происходит движение? 4. В каких случаях тело можно рассматривать как материальную точку? 5. Как иначе называется материальная точка? 6. Что такое траектория? 7. Чем отличается путь от траектории? 8. Что на самом деле движется: Земля вокруг Солнца или Солнце вокруг Земли? 9. Кто находится в движении: пассажир, едущий в автобусе, или человек, стоящий у автобусной остановки? 10. Можно ли считать материальной точкой земной шар?

Темы кодификатора ЕГЭ: механическое движение и его виды, относительность механического движения, скорость, ускорение.

Понятие движения является чрезвычайно общим и охватывает самый широкий круг явлений. В физике изучают различные виды движения. Простейшим из них является механическое движение. Оно изучается в механике.
Механическое движение - это изменение положение тела (или его частей) в пространстве относительно других тел с течением времени.

Если тело A меняет своё положение относительно тела B, то и тело B меняет своё положение относительно тела A. Иначе говоря, если тело A движется относительно тела B, то и тело B движется относительно тела A. Механическое движение является относительным - для описания движения необходимо указать, относительно какого тела оно рассматривается.

Так, например, можно говорить о движении поезда относительно земли, пассажира относительно поезда, мухи относительно пассажира и т. д. Понятия абсолютного движения и абсолютного покоя не имеют смысла: пассажир, покоящийся относительно поезда, будет двигаться с ним относительно столба на дороге, совершать вместе с Землёй суточное вращение и двигаться вокруг Солнца.
Тело, относительно которого рассматривается движение, называется телом отсчёта .

Основной задачей механики является определение положения движущегося тела в любой момент времени. Для решения этой задачи удобно представить движение тела как изменение координат его точек с течением времени. Чтобы измерить координаты, нужна система координат. Чтобы измерять время, нужны часы. Всё это вместе образует систему отсчёта.

Система отсчёта - это тело отсчёта вместе с жёстко связанной с ним («вмороженной»» в него) системой координат и часами.
Система отсчёта показана на рис. 1. Движение точки рассматривается в системе координат . Начало координат является телом отсчёта.

Рисунок 1.

Вектор называется радиус-вектором точки . Координаты точки являются в то же время координатами её радиус-вектора .
Решение основной задачи механики для точки состоит в нахождении её координат как функций времени: .
В ряде случаев можно отвлечься от формы и размеров изучаемого объекта и рассматривать его просто как движущуюся точку.

Материальная точка - это тело, размерами которого можно пренебречь в условиях данной задачи.
Так, поезд можно считать материальной точкой при его движении из Москвы в Саратов, но не при посадке в него пассажиров. Землю можно считать материальной точкой при описании её движения вокруг Солнца, но не её суточного вращения вокруг собственной оси.

К характеристикам механического движения относятся траектория, путь, перемещение, скoрость и ускорение.

Траектория, путь, перемещение.

В дальнейшем, говоря о движущемся (или покоящемся) теле, мы всегда полагаем, что тело можно принять за материальную точку. Случаи, когда идеализацией материальной точки пользоваться нельзя, будут специально оговариваться.

Траектория - это линия, вдоль которой движется тело. На рис. 1 траекторией точки является синяя дуга, которую описывает в пространстве конец радиус-вектора .
Путь - это длина участка траектории, пройденного телом за данный промежуток времени.
Перемещение - это вектор, соединяющий начальное и конечное положение тела.
Предположим, что тело начало движение в точке и закончило движение в точке (рис. 2). Тогда путь, пройденный телом, это длина траектории . Перемещение тела - это вектор .

Рисунок 2.

Скорость и ускорение.

Рассмотрим движение тела в прямоугольной системе координат с базисом (рис. 3).


Рисунок 3.

Пусть в момент времени тело находилось в точке с радиус-вектором

Спустя малый промежуток времени тело оказалось в точке с
радиус-вектором

Перемещение тела:

(1)

Мгновенная скорость в момент времени - это предел отношения перемещения к интервалу времени , когда величина этого интервала стремится к нулю; иными словами, скорость точки - это производная её радиус-вектора:

Из (2) и (1) получаем:

Коэффициенты при базисных векторах в пределе дают производные:

(Производная по времени традиционно обозначается точкой над буквой.) Итак,

Мы видим, что проекции вектора скорости на координатные оси являются производными координат точки:

Когда стремится к нулю, точка приближается к точке и вектор перемещения разворачивается в направлении касательной. Оказывается, что в пределе вектор направлен точно по касательной к траектории в точке . Это и показано на рис. 3.

Понятие ускорения вводится похожит образом. Пусть в момент времени скорость тела равна , а спустя малый интервал скорость стала равна .
Ускорение - это предел отношения изменения скорости к интервалу , когда этот интервал стремится к нулю; иначе говоря, ускорение - это производная скорости:

Ускорение, таким образом, есть "cкорость изменения скорости". Имеем:

Следовательно, проекции ускорения являются производными проекций скорости (и, стало быть, вторыми производными координат):

Закон сложения скоростей.

Пусть имеются две системы отсчёта. Одна из них связана с неподвижным телом отсчёта . Эту систему отсчёта обозначим и будем называть неподвижной .
Вторая система отсчёта, обозначаемая , связана с телом отсчёта , которое движется относительно тела со скоростью . Эту систему отсчёта называем движущейся . Дополнительно предполагаем, что координатные оси системы перемещаются параллельно самим себе (нет вращения системы координат), так что вектор можно считать скоростью движущейся системы относительно неподвижной.

Неподвижная система отсчёта обычно связана с землёй. Если поезд плавно едет по рельсам со скоростью , это система отсчёта, связанная с вагоном поезда, будет движущейся системой отсчёта .

Заметим, что скорость любой точки вагона (кроме вращающихся колёс!) равна . Если муха неподвижно сидит в некоторой точке вагона, то относительно земли муха движется со скоростью . Муха переносится вагоном, и потому скорость движущейся системы относительно неподвижной называется переносной скоростью .

Предположим теперь, что муха поползла по вагону. Скорость мухи относительно вагона (то есть в движущейся системе ) обозначается и называется относительной скоростью . Скорость мухи относительно земли (то есть в неподвижной системе ) обозначается и называется абсолютной скоростью .

Выясним, как связаны друг с другом эти три скорости - абсолютная, относительная и переносная.
На рис. 4 муха обозначена точкой .Далее:
- радиус-вектор точки в неподвижной системе ;
- радиус-вектор точки в движущейся системе ;
- радиус-вектор тела отсчёта в неподвижной системе .


Рисунок 4.

Как видно из рисунка,

Дифференцируя это равенство, получим:

(3)

(производная суммы равна сумме производных не только для случая скалярных функций, но и для векторов тоже).
Производная есть скорость точки в системе , то есть абсолютная скорость:

Аналогично, производная есть скорость точки в системе , то есть относительная скорость:

А что такое ? Это скорость точки в неподвижной системе, то есть - переносная скорость движущейся системы относительно неподвижной:

В результате из (3) получаем:

Закон сложения скоростей . Скорость точки относительно неподвижной системы отсчёта равна векторной сумме скорости движущейся системы и скорости точки относительно движущейся системы. Иными словами, абсолютная скорость есть сумма переносной и относительной скоростей.

Таким образом, если муха ползёт по движущемуся вагону, то скорость мухи относительно земли равна векторной сумме скорости вагона и скорости мухи относительно вагона. Интуитивно очевидный результат!

Виды механического движения.

Простейшими видами механического движения материальной точки являются равномерное и прямолинейное движения.
Движение называется равномерным , если модуль вектора скорости остаётся постоянным (направление скорости при этом может меняться).

Движение называется прямолинейным , если направление вектора скорости остаётся постоянным (а величина скорости при этом может меняться). Траекторией прямолинейного движения служит прямая линия, на которой лежит вектор скорости.
Например, автомобиль, который едет с постоянной скоростью по извилистой дороге, совершает равномерное (но не прямолинейное) движение. Автомобиль, разгоняющийся на прямом участке шоссе, совершает прямолинейное (но не равномерное) движение.

А вот если при движении тела остаются постоянными как модуль скорости, так и его направление, то движение называется равномерным прямолинейным .

В терминах вектора скорости можно дать более короткие определения данным типам движения:

Важнейшим частным случаем неравномерного движения является равноускоренное движение, при котором остаются постоянными модуль и направление вектора ускорения:

Наряду с материальной точкой в механике рассматривается ещё одна идеализация - твёрдое тело.
Твёрдое тело - это система материальных точек, расстояния между которыми не меняются со временем. Модель твёрдого тела применяется в тех случаях, когда мы не можем пренебречь размерами тела, но можем не принимать во внимание изменение размеров и формы тела в процессе движения.

Простейшими видами механического движения твёрдого тела являются поступательное и вращательное движения.
Движение тела называется поступательным, если всякая прямая, соединяющая две какие-либо точки тела, перемещается параллельно своему первоначальному направлению. При поступательном движении траектории всех точек тела идентичны: они получаются друг из друга параллельным сдвигом (рис. 5).


Рисунок 5.

Движение тела называется вращательным , если все его точки описывают окружности, лежащие в параллельных плоскостях. При этом центры данных окружностей лежат на одной прямой, которая перпендикулярна всем этим плоскостям и называется осью вращения .

На рис. 6 изображён шар, вращающийся вокруг вертикальной оси. Так обычно рисуют земной шар в соответствующих задачах динамики.

Рисунок 6.
Похожие статьи