Центростремительное ускорение определяется формулой. Вращательное движение

30.09.2019

Позволяет нам существовать на этой планете. Как можно понять, что представляет собой центростремительное ускорение? Определение этой физической величины представлено ниже.

Наблюдения

Самый простой пример ускорения тела, движущегося по окружности, можно наблюдать, вращая камень на веревке. Вы тянете веревку, а веревка тянет камень к центру. В каждый момент времени веревка сообщает камню некоторое количество движения, и каждый раз - в новом направлении. Можно представить движение веревки в виде серии слабых рывков. Рывок - и веревка изменяет свое направление, еще рывок - еще раз изменение, и так по кругу. Если вы внезапно отпустите веревку, рывки прекратятся, а вместе с ними и прекратится изменение направления скорости. Камень будет двигаться в направлении касательной к кругу. Возникает вопрос: "С каким ускорением будет двигаться тело в это мгновение?"

Формула центростремительного ускорения

Прежде всего стоит заметить, что движение тела по окружности является сложным. Камень участвует в двух видах движения одновременно: под действием силы он движется к центру вращения, и одновременно по касательной к окружности, от этого центра удаляется. Согласно Второму закону Ньютона, сила, удерживающая камень на веревке, направлена к центру вращения вдоль этой веревки. Туда же будет направлен вектор ускорения.

Пусть за некоторое время t наш камень, равномерно двигаясь со скоростью V, попадает из точки A в точку B. Предположим, что в момент времени, когда тело пересекало точку B, на него перестала действовать центростремительная сила. Тогда за промежуток времени оно попало бы в точку K. Она лежит на касательной. Если бы в тот же момент времени на тело действовали бы только центростремительные силы, то за время t, двигаясь с одинаковым ускорением, оно оказалось бы в точке O, которая расположена на прямой, представляющей собой диаметр окружности. Оба отрезка являются векторами и подчиняются правилу векторного сложения. В результате суммирования этих двух движений за отрезок времени t получаем результирующую движения по дуге AB.

Если промежуток времени t взять пренебрежимо малым, то дуга AB будет мало отличаться от хорды AB. Таким образом, можно заменить движение по дуге движением по хорде. В этом случае перемещение камня по хорде будет подчиняться законам прямолинейного движения, то есть пройденное расстояние AB будет равно произведению скорости камня на время его движения. AB = V х t.

Обозначим искомое центростремительное ускорение буквой a. Тогда пройденный только под действием центростремительного ускорения путь можно рассчитать по формуле равноускоренного движения:

Расстояние AB равно произведению скорости и времени, то есть AB = V х t,

AO - вычислено ранее по формуле равноускоренного движения для перемещения по прямой: AO = at 2 / 2.

Подставляя эти данные в формулу и преобразуя их, получаем простую и изящную формулу центростремительного ускорения:

Словами это можно выразить так: центростремительное ускорение тела, двигающегося по окружности, равно частному от деления линейной скорости в квадрате на радиус окружности, по которой вращается тело. Центростремительная сила в таком случае будет выглядеть так, как на картинке ниже.

Угловая скорость

Угловая скорость равна частному от деления линейной скорости на радиус окружности. Верно и обратное утверждение: V = ωR, где ω - угловая скорость

Если подставить это значение в формулу, можно получить выражение центробежного ускорения для угловой скорости. Оно будет выглядеть так:

Ускорение без изменения скорости

И все же, отчего тело с ускорением, направленным к центру, не движется быстрее и не перемещается ближе к центру вращения? Ответ кроется в самой формулировке ускорения. Факты говорят о том, что движение по окружности реально, но для его поддержания требуется ускорение, направленное к центру. Под действием силы, вызванной данным ускорением, происходит изменение количества движения, в результате чего траектория движения постоянно искривляется, все время меняя направление вектора скорости, но не изменяя ее абсолютной величины. Двигаясь по кругу, наш многострадальный камень устремляется внутрь, в противном случае он продолжал бы двигаться по касательной. Каждое мгновение времени, уходя по касательной, камень притягивается к центру, но не попадает в него. Еще одним примером центростремительного ускорения может стать водный лыжник, описывающий небольшие круги на воде. Фигура спортсмена наклонена; он как бы падает, продолжая движение и наклонившись вперед.

Таким образом, можно сделать вывод о том, что ускорение не увеличивает скорость тела, так как векторы скорости и ускорения перпендикулярны друг к другу. Добавляясь к вектору скорости, ускорение лишь меняет направление движения и удерживает тело на орбите.

Превышение запаса прочности

В предыдущем опыте мы имели дело с идеальной веревкой, которая не рвалась. Но, допустим, наша веревка самая обычная, и даже можно вычислить усилие, после которого она просто порвется. Для того чтобы рассчитать эту силу, достаточно сопоставить запас прочности веревки с нагрузкой, которую она испытывает в процессе вращения камня. Вращая камень с большей скоростью, вы сообщаете ему большее количество движения, а значит, и большее ускорение.

При диаметре джутовой веревки около 20 мм ее прочность на разрыв равна около 26 кН. Примечательно, что длина веревки нигде не фигурирует. Вращая груз размером в 1 кг на веревке радиусом в 1 м, можно вычислить, что линейная скорость, необходимая для ее разрыва равна 26 х 10 3 = 1кг х V 2 / 1 м. Таким образом, скорость, которую опасно превышать, будет равна √26 х 10 3 = 161 м/с.

Сила тяжести

При рассмотрении опыта мы пренебрегали действием силы тяжести, так как при таких больших скоростях ее влияние пренебрежимо мало. Но можно заметить, что при раскручивании длинной веревки тело описывает более сложную траекторию и постепенно приближается к земле.

Небесные тела

Если перенести законы движения по окружности в космос и применить их к движению небесных тел, можно заново открыть несколько давно знакомых формул. Например, сила, с которой тело притягивается к Земле, известна по формуле:

В нашем случае множитель g и является тем самым центростремительным ускорением, которое было выведено из предыдущей формулы. Только в этом случае роль камня будет выполнять небесное тело, притягивающееся к Земле, а роль веревки - сила земного притяжения. Множитель g будет выражен через радиус нашей планеты и скорость ее вращения.

Итоги

Сущность центростремительного ускорения состоит в тяжелой и неблагодарной работе удержания движущегося тела на орбите. Наблюдается парадоксальный случай, когда при постоянном ускорении тело не изменяет величины своей скорости. Для неподготовленного ума такое заявление довольно парадоксально. Тем не менее и при расчете движения электрона вокруг ядра, и при вычислении скорости вращения звезды вокруг черной дыры, центростремительной ускорение играет не самую последнюю роль.

Определение

Центростремительным ускорением называют компоненту полного ускорения материальной точки, движущейся по криволинейной траектории, которая определяет быстроту изменения направления вектора скорости.

Другой компонентой полного ускорения является тангенциальное ускорение, оно отвечает за изменение величины скорости. Обозначают центростремительное ускорение, обычно ${\overline{a}}_n$. Центростремительное ускорение еще называют нормальным.

Центростремительное ускорение равно:

\[{\overline{a}}_n=\frac{v^2}{r^2}\overline{r\ }=\frac{v^2}{r}{\overline{e}}_r\left(1\right),\]

где ${\overline{e}}_r=\frac{\overline{r\ }}{r}$ - единичный вектор, который направлен от центра кривизны траектории к рассматриваемой точке; $r$ - радиус кривизны траектории в месте нахождения материальной точки в рассматриваемый момент времени.

Первым верные формулы для вычисления центростремительного ускорения получил Х. Гюйгенс.

Единицей измерения центростремительного ускорения в Международной системе единиц является метр, деленный на секунду в квадрате:

\[\left=\frac{м}{с^2}.\]

Формула центростремительного ускорения при равномерном движении точки по окружности

Рассмотрим равномерное движение материальной точки по окружности. При таком перемещении величина скорости материальной точки неизменна ($v=const$). Но это не означает, что полное ускорение материальной точки при таком виде движения равно нулю. Вектор мгновенной скорости направлен по касательной к окружности, по которой перемещается точка. Следовательно, в этом движении скорость постоянно изменяет свое направление. Отсюда следует, что точка имеет ускорение.

Рассмотрим точки A и B которые лежат на траектории движения частицы. Вектор изменения скорости для точек A и B найдем как:

\[\Delta \overline{v}={\overline{v}}"-\overline{v}\left(2\right).\]

Если время, затрачиваемое на движение от точки A до точки B, стремится к нулю, то дуга AB мало не отличается от хорды AB. Треугольники AOB и BMN подобны, получим:

\[\frac{\Delta v}{v}=\frac{\Delta l}{R}=\alpha \left(3\right).\]

Величину модуля среднего ускорения определяют как:

\[\left\langle a\right\rangle =\frac{\Delta v}{\Delta t}=\frac{v\Delta l}{R\Delta t}\left(4\right).\]

Перейдем к пределу при $\Delta t\to 0\ $ от $\left\langle a\right\rangle \ \ $в формуле (4):

Вектор среднего ускорения составляет с вектором скорости угол равный:

\[\beta =\frac{\pi +\alpha }{2}\left(6\right).\]

При $\Delta t\to 0\ $ угол $\alpha \to 0.$ Получается, что вектор мгновенного ускорения составляет с вектором скорости угол $\frac{\pi }{2}$.

И так, что материальная точка, равномерно движущаяся по окружности, обладает ускорением, которое направленно к центру окружности (${\overline{a}}_n\bot \overline{v}$), его величина равна скорости в квадрате, деленной на радиус окружности:

где $\omega $ - угловая скорость движения материальной точки ($v=\omega \cdot R$). В векторном виде формулу для центростремительного ускорения можно записать, опираясь на (7) как:

\[{\overline{a}}_n=-{\omega }^2\overline{R}\ \left(8\right),\]

где $\overline{R}$ - радиус-вектор, равный по длине радиусу дуги окружности, направленный от центра кривизны к местоположению рассматриваемой материальной точки.

Примеры задач с решением

Пример 1

Задание. Векторное уравнение $\overline{r}\left(t\right)=\overline{i}{\cos \left(\omega t\right)+\overline{j}{\sin \left(\omega t\right)\ }\ }$, где $\omega =2\ \frac{рад}{с},$ описывает движение материальной точки. По какой траектории движется данная точка? Чему равен модуль ее центростремительного ускорения? Считайте, что все величины в системе СИ.

Решение. Рассмотрим уравнение движения точки:

\[\overline{r}\left(t\right)=\overline{i}{\cos \left(\omega t\right)+\overline{j}{\sin (\omega t)\ }\ }\ \left(1.1\right).\]

В декартовой системе координат это уравнение эквивалентно системе уравнений:

\[\left\{ \begin{array}{c} x={\cos \left(\omega t\right);;\ } \\ y={\sin \left(\omega t\right)\ } \end{array} \left(1.2\right).\right.\]

Для того, чтобы понять по какой траектории движется точка нам следует исключить время из уравнений системы (1.2). Для этого возведем оба уравнение в квадрат и сложим их:

Из уравнения (1.3) мы видим, что траекторией движения точки является окружность (рис.2) радиуса $R=1$ м.

Для того чтобы найти центростремительное ускорение воспользуемся формулой:

Модуль скорости определим используя систему уравнений (1.2). Найдем компоненты скорости, которые равны:

\[\left\{ \begin{array}{c} v_x=\frac{dx}{dt}=-\omega {\sin \left(\omega t\right)\ }, \\ v_y=\frac{dy}{dt}=\omega {{\cos \left(\omega t\right)\ } ,\ } \end{array} \right.\left(1.5\right).\]

Квадрат модуля скорости будет равен:

Из того, какой получился модуль скорости (1.6), мы видим, что наша точка движется по окружности равномерно, следовательно, центростремительное ускорение будет совпадать с полным ускорением.

Подставим $v^2$ из (1.6) в формулу (1.4), имеем:

Вычислим $a_n$:

$a_n=\frac{4}{1}=4\ \left(\frac{м}{с^2}\right).$

Ответ. 1) Окружность; 2) $a_n=4\ \frac{м}{с^2}$

Пример 2

Задание. Каково центростремительное ускорение точек на ободе диска в момент времени, равный $t=2$c, если диск вращается в соответствии с уравнением: $\varphi (t)=3+2t^3$? Радиус диска равен $R=0,{\rm 1}$ м.

Решение. Центростремительное ускорение точек диска будем искать, применяя формулу:

Угловую скорость найдем, используя уравнение $\varphi (t)=3+2t^3$ как:

\[\omega =\frac{d\varphi }{dt}=6t^2.\ \]

При $t=2\ $c угловая скорость равна:

\[\omega \left(t=2\right)=24\ \left(\frac{рад}{с}\right).\]

Можно вычислить центростремительное ускорение по формуле (2.1):

Ответ. $a_n=57,6\frac{м}{с^2}$

Ранее рассматривались характеристики прямолинейного движения: перемещение, скорость, ускорение . Их аналогами при вращательном движении являются: угловое перемещение, угловая скорость, угловое ускорение .

  • Роль перемещения во вращательном движении играет угол ;
  • Величина угла поворота за единицу времени - это угловая скорость ;
  • Изменение угловой скорости за единицу времени - это угловое ускорение .

Во время равномерного вращательного движения тело совершает движение по окружности с одинаковой скоростью, но с изменяющимся направлением. Например, такое движение совершают стрелки часов по циферблату.

Допустим, шар равномерно вращается на нити длиной 1 метр. При этом он будет описывать окружность с радиусом 1 метр. Длина такой окружности: C = 2πR = 6,28 м

Время, за которое шар полностью делает один полный оборот по окружности, называется периодом вращения - T .

Чтобы вычислить линейную скорость шара, необходимо разделить перемещение на время, т.е. длину окружности на период вращения:

V = C/T = 2πR/T

Период вращения:

T = 2πR/V

Если наш шар будет делать один оборот за 1 секунду (период вращения = 1с), то его линейная скорость:
V = 6,28/1 = 6,28 м/с

2. Центробежное ускорение

В любой точке вращательного движения шара вектор его линейной скорости направлен перпендикулярно радиусу. Нетрудно догадаться, что при таком вращении по окружности, вектор линейной скорости шара постоянно меняет свое направление. Ускорение, характеризующее такое изменение скорости, называется центробежным (центростремительным) ускорением .

Во время равномерного вращательного движения меняется только направление вектора скорости, но не величина! Поэтому линейное ускорение = 0 . Изменение линейной скорости поддерживается центробежным ускорением, которое направлено к центру окружности вращения перпендикулярно вектору скорости - a ц .

Центробежное ускорение можно вычислить по формуле: a ц = V 2 /R

Чем больше линейная скорость тела и меньше радиус вращения, тем центробежное ускорение больше.

3. Центробежная сила

Из прямолинейного движения мы знаем, что сила равна произведению массы тела на его ускорение.

При равномерном вращательном движении на вращающееся тело действует центробежная сила:

F ц = ma ц = mV 2 /R

Если наш шарик весит 1 кг , то для удержания его на окружности понадобится центробежная сила:

F ц = 1·6,28 2 /1 = 39,4 Н

С центробежной силой мы сталкиваемся в повседневной жизни при любом повороте.

Сила трения должна уравновесить центробежную силу:

F ц = mV 2 /R; F тр = μmg

F ц = F тр; mV 2 /R = μmg

V = √μmgR/m = √μgR = √0,9·9,8·30 = 16,3 м/с = 58,5 км/ч

Ответ : 58,5 км/ч

Обратите внимание, что скорость в повороте не зависит от массы тела!

Наверняка вы обращали внимание, что некоторые повороты на шоссе имеют некоторый наклон внутрь поворота. Такие повороты "легче" проходить, вернее, можно проходить с бОльшей скоростью. Рассмотрим какие силы действуют на автомобиль в таком повороте с наклоном. При этом силу трения учитывать не будем, а центробежное ускорение будет компенсироваться только горизонтальной составляющей силы тяжести:


F ц = mV 2 /R или F ц = F н sinα

В вертикальном направлении на тело действует сила тяжести F g = mg , которая уравновешивается вертикальной составляющей нормальной силы F н cosα :

F н cosα = mg , отсюда: F н = mg/cosα

Подставляем значение нормальной силы в исходную формулу:

F ц = F н sinα = (mg/cosα)sinα = mg·sinα/cosα = mg·tgα

Т.о., угол наклона дорожного полотна:

α = arctg(F ц /mg) = arctg(mV 2 /mgR) = arctg(V 2 /gR)

Опять обратите внимание, что в расчетах не участвует масса тела!

Задача №2: на некотором участке шоссе имеется поворот с радиусом 100 метров. Средняя скорость прохождения этого участка дороги автомобилями 108 км/ч (30 м/с). Каким должен быть безопасный угол наклона полотна дороги на этом участке, чтобы автомобиль "не вылетел" (трением пренебречь)?

α = arctg(V 2 /gR) = arctg(30 2 /9,8·100) = 0,91 = 42° Ответ : 42° . Довольно приличный угол. Но, не забывайте, что в наших расчетах мы не принимаем во внимание силу трения дорожного полотна.

4. Градусы и радианы

Многие путаются в понимании угловых величин.

При вращательном движении основной единицей измерения углового перемещения является радиан .

  • 2π радиан = 360° - полная окружность
  • π радиан = 180° - половина окружности
  • π/2 радиан = 90° - четверть окружности

Чтобы перевести градусы в радианы, необходимо значение угла разделить на 360° и умножить на 2π . Например:

  • 45° = (45°/360°)·2π = π/4 радиан
  • 30° = (30°/360°)·2π = π/6 радиан

Ниже в таблице представлены основные формулы прямолинейного и вращательного движения.

При движении по окружности с постоянной по величине линейной скоростью υ тело имеет направленное к центру окружности постоянное центростремительное ускорение

a ц = υ 2 /R, (18)

где R – радиус окружности.

Вывод формулы для центростремительного ускорения

По определению.

Рисунок 6 Вывод формулы центростремительного ускорения

На рисунке треугольники, образованные векторами перемещений и скоростей, подобны. Учитывая, что == R и== υ, из подобия треугольников находим:

(20)

(21)

Поместим начало координат в центр окружности и выберем плоскость, в которой лежит окружность, за плоскость (x, y). Положение точки на окружности в любой момент времени однозначно определяется полярным углом φ, измеряемым в радианах (рад), причем

x = R cos(φ + φ 0), y = R sin(φ + φ 0), (22)

где φ 0 определяет начальную фазу (начальное положение точки на окружности в нулевой момент времени).

В случае равномерного вращения угол φ, измеряемый в радианах, линейно растет со временем:

φ = ωt, (23)

где ω называется циклической (круговой) частотой. Размерность циклической частоты: [ω] = c –1 = Гц.

Циклическая частота равна величине угла поворота (измеренного в рад) за единицу времени, так что иначе ее называют угловой скоростью.

Зависимость координат точки на окружности от времени в случае равномерного вращения с заданной частотой можно записать в виде:

x= R cos(ωt + φ 0), (24)

y = R sin(ωt + φ 0).

Время, за которое совершается один оборот, называется периодом T.

Частота ν = 1/T. (25)

Размерность частоты: [ν] = с –1 = Гц.

Связь циклической частоты с периодом и частотой: 2π = ωT, откуда

ω = 2π/T = 2πν. (26)

Связь линейной скорости и угловой скорости находится из равенства:

2πR = υT, откуда

υ = 2πR/T = ωR. (27)

Выражение для центростремительного ускорения можно записать разными способами, используя связи между скоростью, частотой и периодом:

a ц = υ 2 /R = ω 2 R = 4π 2 ν 2 R = 4π 2 R/T 2 . (28)

4.6 Связь поступательного и вращательного движений

Основные кинематические характеристики движения по прямой с постоянным ускорением: перемещение s, скорость υ и ускорение a . Соответствующие характеристики при движении по окружности радиусом R: угловое перемещение φ, угловая скорость ω и угловое ускорение ε (в случае, если тело вращается с переменной скоростью).

Из геометрических соображений вытекают следующие связи между этими характеристиками:

перемещение s → угловое перемещение φ = s/R;

скорость υ → угловая скорость ω = υ /R;

ускорение a → угловое ускорение ε = a /R.

Все формулы кинематики равноускоренного движения по прямой могут быть превращены в формулы кинематики вращения по окружности, если сделать указанные замены. Например:

s = υt → φ = ωt, (29)

υ = υ 0 + a t → ω = ω 0 + ε t. (29а)

Связь между линейной и угловой скоростями точки при вращении по окружности можно записать в векторной форме. Действительно, пусть окружность с центром в начале координат расположена в плоскости (x, y). В любой момент времени вектор , проведенный из начала координат в точку на окружности, где находится тело, перпендикулярен вектору скорости тела, направленному по касательной к окружности в этой точке. Определим вектор, который по модулю равен угловой скорости ω и направлен вдоль оси вращения в сторону, которая определяется правилом правого винта: если завинчивать винт так, чтобы направление его вращения совпадало с направлением вращения точки по окружности, то направление движения винта показывает направление вектора. Тогда связь трех взаимно перпендикулярных векторов,иможно записать с помощью векторного произведения векторов.

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным , оно является равноускоренным .

Угловая скорость

Выберем на окружности точку 1 . Построим радиус. За единицу времени точка переместится в пункт 2 . При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T - это время, за которое тело совершает один оборот.

Частота вращение - это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.


Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено - это есть период T . Путь , который преодолевает точка - это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения


Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна v A и v B соответственно. Ускорение - изменение скорости за единицу времени. Найдем разницу векторов.

Похожие статьи