Закономерности наследования признаков и принципы наследственности. Закономерности наследования, установленные Г

29.09.2019

Генетика как наука. Основные понятия генетики

Генетика изучает закономерности наследственности и изменчивости, которые относятся к основным свойствам живых организмов.

Наследственностью называется свойство организмов повторять в ряду поколений сходные признаки. Функциональной единицей наследственности является ген, который реализуется в признак.

Изменчивость – это способность организмов приобретать новые признаки – различия в пределах вида.

Наследование — это способ передачи наследственной информации, который может измениться в зависимости от форм размножения.

Основные закономерности наследования были открыты чешским ботаником Грегором Менделем в 1865 году, хотя в то время они не получили признания. Лишь в 1900 году те же закономерности вновь установили независимо друг от друга Гуго де Фриз в Голландии, Корренс в Германии и Чермак в Австрии.

Изучая закономерности наследования, Г. Мендель использовал гибридологический метод, суть которого состоит в следующем:

— скрещивая организмы между собой, он выделял и анализировал наследование по отдельным контрастным или альтернативным признакам (цвет желтый или зеленый),

— был проведен точный количественный учет наследования каждого альтернативного признака в ряду последующих поколений.

— было прослежено не только первое поколение, но и последующие по этому признаку.

Скрещивание, в котором родительские особи анализируется по одной альтернативной паре признаков, называется моногибридным, по двум — дигибридным, по трем и более — полигибридным.

Основные понятия генетики

В настоящее время установлено, что гены, отвечающие за признаки, находятся в хромосомах. Хромосомы в соматических клетках организма парные или гомологичные. Поэтому за развитие одного признака отвечают два гена. Гены, определяющие развитие одного и того же признака и расположенные в одних и тех же локусах гомологичных хромосом, называют аллельными. Если в обеих гомологичных хромосомах, в одних и тех же локусах, находятся идентичные аллели гена, то такой организм называется гомозиготным. В потомстве таких организмов не происходит расщепления признаков.

Организм, у которого гомологичные хромосомы несут различные аллели того или иного гена, называется гетерозиготным. В потомстве такие организмы обнаруживают расщепление признаков.

Явление преобладания признака получило название доминирования, а преобладающий признак называется доминантным. Признак, который подавляется, называется рецессивным.

Гены принято обозначать буквами латинского алфавита. Гены, относящиеся к одной аллельной паре, обозначают одной и той же буквой, но аллель доминантного состояния признака — прописной, а рецессивного — строчной. Так в зиготе и в соматических клетках всегда два аллеля одного и того же гена, поэтому генотипическую формулу по любому признаку необходимо записывать двумя буквами.

АА – особь, гомозиготная по доминантному признаку

аа – особь, гомозиготная по рецессивному признаку

Аа – особь гетерозиготная

Рецессивный аллель проявляется только в гомозиготном состоянии, а доминантный – как в гомозиготном, так и в гетерозиготном состоянии.

Совокупность всех генов в организме называется генотип. Совокупность всех признаков и свойств организма называется фенотип. Фенотип зависит от генотипа и от факторов окружающей среды.

Моногибридное скрещивание

Опыты Мендель проводил на горохе. При скрещивании сортов гороха, имеющих желтые и зеленые семена (скрещивались гомозиготные организмы или чистые линии), все потомство (т.е. гибриды первого поколения) оказалось с желтыми семенами. Противоположный признак (зеленые семена) как бы исчезает. Обнаруженная закономерность получила название правило единообразия (доминирования) гибридов первого поколения (или первый закон Г. Менделя).

Опыты по скрещиванию записывают в виде схем:

А – ген желтой окраски

а – ген зеленой окраски

Р — (parents – родители)

F — (filii – дети)

Р ♀АА х ♂аа

F1 Аа – 100% желтые

Итак, все гибриды первого поколения оказываются однородными: гетерозиготными по генотипу и доминантными по фенотипу.

Таким образом, первое правило (закон) Менделя единообразия гибридов первого поколения можно сформулировать следующим образом: при скрещивании гомозиготных особей, отличающихся друг от друга по одной паре альтернативных признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу

Правило расщепления. Второй закон Менделя

Если скрестить гибриды первого поколения между собой, во втором поколении появляются особи, как с доминантными, так и с рецессивными признаками, т.е. возникает расщепление в определенном численном соотношении. В опытах с горохом желтых семян оказывается в три раза больше, чем зеленых. Эта закономерность получила название второго закона (правило) Менделя, или закона (правило) расщепления.

Р ♀ Аа х ♂ Аа

G (А) (а) (А) (а)

F2 АА; Аа, Аа; аа

желтые зеленые

Расщепление по фенотипу 3:1, по генотипу 1АА:2Аа:1аа

Второй закон (правило) Менделя: при скрещивании двух гетерозиготных особей, анализируемых по одной альтернативной паре признаков (т.е. гибридов), в потомстве ожидается расщепление по фенотипу 3:1 и по генотипу 1:2:1.

Ди- и полигибридное скрещивание. Третий закон Менделя

При дигибридном скрещивании родительские организмы анализируются по двум парам альтернативных признаков. Мендель изучал такие признаки как окраску семян и их форму. При скрещивании гороха с желтыми и гладкими семенами с горохом, имеющим зеленые и морщинистые семена, в первом поколении все потомство оказалось однородным, проявились только доминантные признаки – желтый цвет и гладкая форма. Следовательно, как и при моногибридном скрещивании здесь имело место правило единообразия гибридов первого поколения или правило доминирования.

А – ген желтого цвета

а – ген зеленого цвета

В – ген гладкой формы

в – ген морщинистой формы

Р ♀ААВВ х ♂аавв

ж. гл. з. морщ.

F1 АаВв – желтые гладкие

При скрещивании гибридов первого поколения между собой произошло расщепление по фенотипу:

Р ♀ АаВв х ♂АаВв

9 частей – желтых гладких

3 части – желтых морщинистых

3 части – зеленых гладких

1 часть – зеленых морщинистых

Из этого скрещивания видно, что во втором поколении имелись не только особи с сочетанием признаков родителей, но и особи с новыми комбинациями признаков.

Кроме того, Мендель обнаружил, что каждая пара признаков (цвет и форма) дала расщепление приблизительно в отношении 3:1, то есть как при моногибридном скрещивании. Отсюда был сделан вывод, что каждая пара альтернативных признаков при ди- и полигибридном скрещивании наследуется независимо друг от друга.

Третье правило или третий закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей отличающихся двумя (или более) парами альтернативных признаков, во втором поколении наблюдается независимое наследование и комбинирование признаков, если гены, определяющие их, расположены в различных гомологичных хромосомах.

Кроме законов, Мендель сформулировал две гипотезы: факторальную и гипотезу «чистоты гамет», с помощью которых он попытался объяснить установленные закономерности.

Факторальная гипотеза указывает на то, что в клетках содержится фактор (ген), который и несет признак. Родители передают потомкам не признаки, а эти факторы.

Гипотеза «чистоты гамет»: организм по каждому признаку несет два наследственных фактора (один от отца, второй от матери). Эти наследственные факторы, находясь в клетках, не сливаются друг с другом и при формировании гамет расходятся в разные гаметы.

Анализирующее скрещивание

Рецессивный аллель проявляется только в гомозиготном состоянии. Поэтому о генотипе организма проявляющего рецессивный признак можно судить по фенотипу.

Гомозиготная и гетерозиготная особи, проявляющие доминантные признаки по фенотипу неотличимы. Для определения генотипа производят анализирующее скрещивание и узнают генотип родителей по потомству.

Анализирующее скрещивание заключается в том, что особь, генотип которой не ясен, но должен быть выяснен скрещивается с рецессивной формой. Если от такого скрещивания все потомство окажется однородным, значит анализируемая особь гомозиготна, если же произойдет расщепление, то она гетерозиготна

Р ♀ АА х ♂ аа

Р ♀ Аа х ♂ аа

G (А) (а) (а)

Как видно из схемы, при анализирующем скрещивании для потомства гетерозиготной особи характерно расщепление 1:1.

Основные закономерности наследования были открыты Г. Менделем на горохе. Он осуществлял внутривидовые скрещивания форм, отличающихся по единичному числу признаков, имеющих альтернативные (контрастные) их проявления. В числе признаков, которые он использовал, были окраска семян, цветков и бобов, форма семян и бобов, расположение цветков, высота растений. Первоначально проводился гибридологический анализ форм гороха, отличавшихся по одному признаку. Скрещивания, в которые вовлекаются родительские формы, имеющие отличия по проявлениям одного признака, называются моногибридными.

При скрещивании двух исходных форм, относящихся к чистым линиям, в первом дочернем поколении, как правило, наблюдается появление потомков одинакового фенотипа. Эта закономерность известна под названием закона единообразия гибридов первого поколения. Гибриды F1 могут иметь проявление признака как одного из родителей, так и промежуточное между исходными формами выражение. При этом, если различия родительских форм определяются одним геном (моногенно), запись скрещивания выглядит следующим образом: Р АА х аа → F1Аа. Это означает, что за проявление данного признака ответствен ген А, который существует в двух разных состояниях - А и а. Такие альтернативные состояния гена называются аллелями.

Анализируя результаты моногибридных скрещиваний, Г. Мендель установил правило (иногда именуемое законом) чистоты гамет. Оно подразумевает, что любая гамета любого организма несет по одному аллелю каждого гена, аллели в них не перемешиваются. Это означает, что у особей генотипа АА формируются гаметы одного вида - А, у особей генотипа аа - также одного типа - а. Такие особи, образующие гаметы только одного сорта (по крайней мере по тому гену, который находится в центре внимания), являются гомозиготными (или гомозиготами). Таким образом, нетрудно убедиться, что чистые линии состоят из гомозиготных особей. Гибриды Рх генотипа Аа формируют гаметы двух сортов - А и а, каждый из которых «чист» в отношении аллеля А или а. Такие особи (или генотипы), образующие гаметы нескольких видов, называются гетерозиготными (или гетерозиготами). В основе закона единообразия гибридов первого поколения лежит механизм расхождения хромосом в мейозе. Каждый из аллелей лежит в своей хромосоме (или хроматиде), и при расхождении хромосом (в первом делении мейоза), а затем и хроматид (во втором делении мейоза) вместе с ними в гаплоидные клетки отходит по одному из соответствующих аллелей. Таким образом, закон единообразия гибридов первого поколения является следствием основополагающего правила чистоты гамет, которое определяет и другие законы наследования.

Аллели одного гена взаимодействуют друг с другом разными способами. Если у гетерозиготы Аа проявляется фенотипическое выражение признака, одинаковое с особями генотипа АА, то аллель А полностью доминирует над а, тогда особи АА несут доминантное проявление признака, а гомозиготы по а - рецессивное. В этом заключается еще одно правило менделизма.- правило доминирования. Если же гетерозигота имеет проявление признака, промежуточное между двумя родительскими формами (например, при скрещивании растений ночной красавицы с красными и белыми цветками образуются гибриды с розовой окраской венчика), то речь идет о неполном доминировании.

Иногда у гетерозигот проявляются признаки обоих родителей - это отсутствие доминирования, или ко доминирование.

Закон расщепления в моногибридном скрещивании

Моногибридным называется скрещивание, в котором исходные формы отличаются по одному признаку. При скрещивании гибридов первого поколения, полученных от скрещивания гомозиготных форм, обнаруживается расщепление на 3/4 особей с доминантным проявлением признака и 1/4 - с рецессивным проявлением признака.

Во втором поколении, получаемом в результате скрещивания гибридов Р1 между собой, появляется два фенотипических класса в строго определенном соотношении. Это и есть расщепление, под которым понимают наличие в потомстве нескольких фенотипов в конкретных численных соотношениях.

Гибриды первого поколения могут скрещиваться не только с себе подобными. Если гетерозиготная особь Р1 скрещивается с организмом, гомозиготным по рецессивному аллелю рассматриваемого гена, то получается расщепление: Аа х аа → 1/2 Аа: 1/2 аа.

Такое скрещивание носит название анализирующего. В анализирующем скрещивании не составляет труда установить типы образуемых гетерозиготной особью гамет и их численное соотношение, легко определить, какие организмы гетерозиготны, а какие гомозиготны по интересующему нас признаку.

Закон расщепления в моногибридном скрещивании читается и в обратном порядке: если при скрещивании двух особей получается одно из рассмотренных выше расщеплений (в Р2 - 3:1, 1:2:1, 2:1, а в анализирующем скрещивании - 1:1), то исходные родительские формы отличаются по аллелям одного гена, то есть между ними существует различие по одному гену (моногенное различие исходных форм).

Закон независимого наследования в дигибридном скрещивании

Дигибридным называется такое скрещивание, в котором исходные формы отличаются по двум признакам. По каждому из признаков родительские формы отличаются по одному гену (по признаку А - по гену А, по признаку В - по гену В). При скрещивании гибридов F1, полученных от дигибридного скрещивания, наблюдается расщепление по фенотипу: 9/16 А-В- : 3/16 А-bb: 3/ 16 ааВ- : 3/16 ааbb.

При этом признаки наследуются независимо друг от друга, и по каждому из них наблюдается расщепление 3/4: 1/4.

Это расщепление легко получается как комбинированное, сочетающее два моногибридных (во втором поколении каждого из которых наблюдается расщепление 3:1), при этом за каждый признак отвечает один ген:

(3/4 А- + 1/4 аа) х (3/4 В- + 1/4 bb) = 9/16 А-В- + 3/16 А-bb + 3/16 ааВ- + 1/16 ааbb.

В анализирующем скрещивании аналогично получается расщепление 1:1:1:1.

Выполнение этого закона определяется независимым характером расхождения хромосом негомологичных пар в мейозе, а также тем, что гены А и В расположены в разных (негомологичных) хромосомах. Независимое расхождение хромосом в мейозе приводит к возникновению новых сочетаний генов и признаков, которых не было у родительских организмов, - в потомстве появляются рекомбинанты (особи, несущие перекомбинированные сочетания признаков).

Так же получаются и расщепления в полигибридных скрещиваниях (скрещивания, в которых родительские формы отличаются по нескольким или многим признакам).

Все законы наследования Г. Менделя иллюстрируют постулированную им точку зрения о дискретном характере наследования: наследуется не сам признак, а определяющие его материальные факторы. Этими факторами являются гены.

Взаимодействие генов

Некоторые признаки определяются не одним геном, а одновременным действием нескольких.

В таких случаях, безусловно, наблюдается изменение и усложнение формул расщеплений и методов анализа. Гены, влияющие на развитие одного признака, называются взаимодействующими. Известно несколько видов такого взаимодействия генов: комплементарное, эпистатическое, полимерное.

Доминантные аллели обоих генов приводят к формированию нового проявления признака, взаимно дополняя друг друга (комплементируя). Если же в генотипе присутствуют лишь рецессивные аллели обоих генов, то признак не проявляется. Биохимический анализ позволяет дополнить эту схему. Окраска глаз у дрозофилы обуславливается двумя пигментами (ярко-красным и коричневым), каждый из которых образуется в отдельной цепи биосинтеза. Рецессивный аллель «b» у гомозигот прерывает синтез ярко-красного пигмента - у таких особей глаза имеют коричневую окраску, аллель «а» нарушает синтез коричневого пигмента - у гомозигот аа глаза имеют ярко-красную окраску, у особей «А-В-» имеется оба пигмента, обуславливая темно-красную окраску глаз, а у гомозигот по обоим генам «ааbb» красящих веществ в глазах нет вообще - глаза бесцветные (белые).

Взаимодействие генов (или взаимодействие неаллельных генов) приводит к расщеплениям дигенного типа. Помимо случая, рассмотренного выше, во втором поколении могут наблюдаться расщепления: 9:7, 9:6:1, 9:3:4, 12:3:1, 13:3, 15:1.

Условия выполнения законов наследования

Рассмотренные выше закономерности наследования признаков выполняются лишь при соблюдении определенных условий. Необходимо, чтобы все типы гамет образовывались с равной вероятностью, обладали одинаковой жизнеспособностью и участвовали в оплодотворении с одинаковой эффективностью, формируя все типы зигот с одинаковой частотой, зиготы же должны характеризоваться равной жизнеспособностью. Степень выраженности признака также должна быть неизменной. Невыполнение хотя бы одного из таких условий приводит к искажению расщеплений.

Например, если в моногибридном скрещивании, в котором наблюдается расщепление в F2 1/4 АА: 2/4 Аа: 1/4 аа, наблюдается избирательная гибель зигот генотипа АА, то фенотипическое расщепление будет выглядеть как 2/3 Аа: 1/3 аа.

Следует отметить, что даже если выполняются перечисленные выше условия, фактическое расщепление не всегда точно соответствует теоретически рассчитанному. Дело в том, что законы наследования, открытые Менделем, проявляются на довольно большом статистическом материале. Для их точного выполнения необходимо проанализировать выборку определенного размера. Таким образом, закономерности наследования являются биологическими по сути, но имеют статистический характер проявления.

Представления о том, что для живых существ характерны наследственность и изменчивость, сложились еще в древности. Было замечено, что при размножении организмов из поколения в поколение передается комплекс признаков и свойств, присущих конкретному виду (проявление наследственности). Однако столь же очевидно и то, что между особями одного вида существуют некоторые различия (проявление изменчивости).

Знание о наличие этих свойств использовалось при выведении новых сортов культурных растений и пород домашних животных. Исстари в сельском хозяйстве применялась гибридизация, т. е. скрещивание организмов, отличающихся друг от друга по каким-либо признакам. Однако до конца XIX в. такая работа осуществлялась методом проб и ошибок, поскольку не были известны механизмы, лежащие в основе проявления подобных свойств организмов, а существовавшие на этот счет гипотезы имели чисто умозрительный характер.

В 1866 г. вышел в свет труд Грегора Менделя, чешского исследователя, «Опыты над растительными гибридами». В нем были описаны закономерности наследования признаков в поколениях растений нескольких видов, которые Г. Мендель выявил в результате многочисленных и тщательно выполненных экспериментов. Но его исследование не привлекло внимания современников, не сумевших оценить новизну и глубину идей, опередивших общий уровень биологических наук того времени. Лишь в 1900 г., после открытия законов Г. Менделя заново и независимо друг от друга тремя исследователями (Г. де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии), начинается развитие новой биологической науки - генетики, изучающей закономерности наследственности и изменчивости. Грегора Менделя справедливо считают основоположником этой молодой, но очень бурно развивающейся науки.

Основные понятия современной генетики.

Наследственностью называется свойство организмов повторять в ряду поколений комплекс признаков (особенности внешнего строения, физиологии, химического состава, характера обмена веществ, индивидуального развития и т. д.).

Изменчивость - явление, противоположное наследственности. Она заключается в изменении комбинаций признаков или появлении совершенно новых признаков у особей данного вида.

Благодаря наследственности обеспечивается сохранение видов на протяжении значительных промежутков (до сотен миллионов лет) времени. Однако условия окружающей среды меняются (иногда существенно) с течением времени, и в таких случаях изменчивость, приводящая к разнообразию особей внутри вида, обеспечивает его выживание. Какие-то из особей оказываются более приспособленными к новым условиям, это и позволяет им выжить. Кроме того, изменчивость позволяет видам расширять границы своего местообитания, осваивать новые территории.

Сочетание двух указанных свойств тесно связано с процессом эволюции. Новые признаки организмов появляются в результате изменчивости, а благодаря наследственности они сохраняются в последующих поколениях. Накапливание множества новых признаков приводит к возникновению других видов

Виды изменчивости

Различают наследственную и ненаследственную изменчивость.

Наследственная (генотипическая) изменчивость связана с изменением самого генетического материала. Ненаследственная (фенотипическая, модификационная) изменчивость - это способность организмов изменять свой фенотип под влиянием различных факторов. Причиной модификационной изменчивости являются изменения внешней среды обитания организма или его внутренней среды.

Норма реакции

Это границы фенотипической изменчивости признака, возникающей под действием факторов внешней среды. Норма реакции определяется генами организма, поэтому норма реакции по одному и тому же признаку у разных индивидов различна. Размах нормы реакции различных признаков также варьирует. Те организмы, у которых норма реакции шире по данному признаку, обладают более высокими адаптивными возможностями в определенных условиях среды, т. е. модификационная изменчивость в большинстве случаев носит адаптивный характер, и большинство изменений, возникших в организме при воздействии определенных факторов внешней среды, являются полезными. Однако фенотипические изменения иногда утрачивают приспособительный характер. Если фенотипическая изменчивость клинически сходна с наследственным заболеванием, то такие изменения называются фенокопией.

Комбинативная изменчивость

Связана с новым сочетанием неизменных генов родителей в генотипах потомства. Факторы комбинативной изменчивости.

1.Независимое и случайное расхождение гомологичных хромосом в анафазе I мейоза.

2.Кроссинговер.

3.Случайное сочетание гамет при оплодотворении.

4.Случайный подбор родительских организмов.

Мутации

Это редкие, случайно возникшие стойкие изменения генотипа, затрагивающие весь геном, целые хромосомы, части хромосом или отдельные гены. Они возникают под действием мутагенных факторов физического, химического или биологического происхождения.

Мутации бывают:

1) спонтанные и индуцированные;

2) вредные, полезные и нейтральные;

3) соматические и генеративные;

4) генные, хромосомные и геномные.

Спонтанные мутации - это мутации, возникшие ненаправленно, под действием неизвестного мутагена.

Индуцированные мутации - это мутации, вызванные искусственно действием известного мутагена.

Хромосомные мутации - это изменения структуры хромосом в процессе клеточного деления. Различают следующие виды хромосомных мутаций.

1.Дупликация - удвоение участка хромосомы за счет неравного кроссинговера.

2.Делеция - потеря участка хромосомы.

3.Инверсия - поворот участка хромосомы на 180°.

4.Транслокация - перемещение участка хромосомы на другую хромосому.

Геномные мутации - это изменение числа хромосом. Виды геномных мутаций.

1.Полиплоидия - изменение числа гаплоидных наборов хромосом в кариотипе. Под кариотипом понимают число, форму и количество хромосом, характерные для данного вида. Различают нуллисомию (отсутствие двух гомологичных хромосом), моносомию (отсутствие одной из гомологичных хромосом) и полисомию (наличие двух и более лишних хромосом).

2.Гетероплоидия - изменение числа отдельных хромосом в кариотипе.

Генные мутации встречаются наиболее часто.

Причины генных мутаций:

1) выпадение нуклеотида;

2) вставка лишнего нуклеотида (эта и предыдущая причины приводят к сдвигу рамки считывания);

3) замена одного нуклеотида на другой.

Передача наследственных признаков в ряду поколений особей осуществляется в процессе размножения. При половом - через половые клетки, при бесполом наследственные признаки передаются с соматическими клетками.

Единицами наследственности (ее материальными носителями) являются гены. В функциональном отношении конкретный ген отвечает за развитие какого-то признака. Это не противоречит тому определению, которое мы давали гену выше. С химической точки зрения ген - участок молекулы ДНК. Он содержит генетическую информацию о структуре синтезируемого белка (т. е. последовательности аминокислот в белковой молекуле).

Совокупность всех генов в организме определяет совокупность конкретных белков, синтезируемых в нем, что в конечном счете приводит к формированию специфических признаков.

У прокариотной клетки гены входят в состав единственной молекулы ДНК, а у эукариотной - в молекулы ДНК, заключенные в хромосомах. При этом в паре гомологичных хромосом в одних и тех же участках располагаются гены, отвечающие за развитие какого-то признака (например, окраска цветка, форма семян, цвет глаз у человека). Они получили название аллельных генов. В одну пару аллельных генов могут входить либо одинаковые (по составу нуклеотидов и определяемому ими признаку), либо отличающиеся гены.

Понятие «признак» связано с каким-то отдельным качеством организма (морфологическим, физиологическим, биохимическим), по которому мы можем отличить его от другого организма. Например: глаза голубые или карие, цветки окрашенные или неокрашенные, рост высокий или низкий, группа крови I(0) или II(A) и т. д.

Совокупность всех генов у организма называется генотипом, а совокупность всех признаков - фенотипом.

Фенотип формируется на базе генотипа в определенных условиях внешней среды в ходе индивидуального развития организмов.

Основные закономерности наследственности и изменчивости

Генетика наука, изучающая закономерности и механизмы наследственности и изменчивости

Наследственность общее свойство всех организмов сохранять и передавать из поколение в поколение признаки своего строения и жизнедеятельности

  • совокупность механизмов, обеспечивающих структурно-функциональную преемственность организмов в ряду поколений (т. е. наследование)

Наследование — процесс воспроизведения в поколениях общего плана структурно-функциональной организации и отдельных признаков у особей одного биологического вида

Изменчивость – общее свойство живых организмов приобретать отличия в строениеии и жизнедеятельности потомков от предков

v ведёт к возникновению индивидуальных различий между особями одного вида

Этапы развития генетики

  • Открытие законов наследственности. В 1856 г. Г. Мендель (чех.) выявил важнейшие законы наследственности (в работе « Опыты над растительными гибридами ») и показал, что:

* признаки определяются дискретными (отдельными) наследственными факторами, которые передаются через половые клетки

* отдельные признаки организма при скрещивании не исчезают, а сохраняются в потомстве в том же виде как и у родителей (дискретная концепция наследственности)

* каждому признаку в организме соответствуют два наследственных фактора, получаемых от женской и мужской особи

  • Официальное рождение генетики . В 1900 г. Г. де Фриз (гол.) , К. Корренс (гер.) и К. Чермак (австр.) на разных объектах независимо переоткрыли законы Менделя и признали его приоритет
  • Развитие хромосомной теории.

В!911 г. Т. Морган (США) сформулировал хромосомную теорию наследственности и экспериментально доказал, что основными носителями генов являются хромосомы, что гены в хромосомах располагаются линейно

  • Открытие нуклеиновых кислот как наследственного материала. В 1928 г. Ф. Гриффит и О. Эвери показали, что свойства от одной клетки к другой могут передаваться только с ДНК
  • Расшифровка строения молекулы ДНК. В 1953 г. Ф. Крик (англ.) и Дж. Уотсон (амер.) предложили модель двойной спирали структуры ДНК, которая многократно проверялась и была признана правильной

n Современная генетика включает несколько дисциплин: цитогенетика, онтогентика, селекция биохимическая генетика, иммуногенетика, медицинская цитогенетика, генетика человека

n Генетика тесно связана с биохимией, молекулярной биологией, цитологией, эмбриологией, теорией эволюции и т. д.

Методы генетики

1. Гибридологический метод (открыт Менделем) — выведение закономерностей наследования на основе количественного учёта (математической обработки) гибридного потомства, полученного при скрещивании родителей, отличающихся одним или несколькими признаками

  • Мендель выделял и учитывал не весь комплекс родительских признаков и их потомков, а анализировал наследование по отдельным альтернативным признакам (одному или нескольким: моно- , ди — , тригибридное, полигибридное и т. д. скрещивание)
  • Производился точный количественный учёт (математическая, статистическая обработка) наследования каждого альтернативного признака в ряду поколений
  • Исследовался аналогично характер потомства каждого гибрида в отдельности
  • Неприменим для изучения генетики человека, поскольку у него возможно только полигибридное скрещивание и чрезвычайно немногочисленное потомство

2. Генеалогический метод — составление и анализ родословных

3. Близнецовый метод — наследование признаков у близнецовс целью оценки соотносительной роли наследственности и среды в развитии признака

4. Цитогенетический метод — изучение хромосом с помощью микроскопа

5. Популяционно-статистический — изучение распространения отдельных генов или хромосомных аномалий в популяциях

6. Мутационный метод — обнаружение мутаций и их наследование в зависимости от способа размножения организма

7. Рекомбинационный метод — выявление рекомбинаций по отдельным парам генов в одной хромосоме и составление на этой основе генетических карт хромосом с указанием относительного расположения отдельных генов

8. Биохимический метод установление последовательности аминокислот в полипептидной цепи и определении мутаций на этой основе

Метод математического моделирования изучение процессов сцепления и взаимодействия генов

10. Метод гибридизации соматических клеток — культивирование соматических клеток и тканей на питательных стерильных средах

11. Дополнительные методы иммунологические, физиологические, психологические, метод условных рефлексов и т. д.

Предыдущая47484950515253545556575859606162Следующая

Основные закономерности наследования

1 . Кариотип

2. Геном.

3. Моногибридное скрещивание. Первый и второй законы Менделя.

4. Анализирующее скрещивание.

Генетика - это наука о наследственности и изменчивости организмов. Наследственность - присущее всем организмам свойство передавать потомству характерные черты строения, индивидуального развития, обмена веществ, а, следовательно, состояния здоровья и предрасположенности ко многим заболеваниям.

Передача потомству признаков предыдущих поколений называется наследованием. Механизмом этой передачи служит процесс размножения, как при простом делении клеток простейших организмов и клеток тканей, так и при половом размножении, когда объединение мужских и женских половых клеток (гамет) приводит к созданию нового организма, имеющего сходство с родителями и предками.

При изучении закономерностей наследования обычно скрещивают особи, отличающиеся друг от друга альтернативными (взаимоисключающими) признаками (например, жёлтый и зелёный цвет, гладкая и морщинистая поверхность горошин). Гены, определяющие развитие альтернативных признаков, называются аллельными. Они располагаются в одинаковых локусах (местах) гомологичных (парных) хромосом. Альтернативный признак и соответствующий ему ген, проявляющийся у гибридов первого поколения. Называют доминантным , а не проявляющийся (подавленный) – рецессивным. Аллельные гены принято обозначать одинаковыми буквами латинского алфавита : доминантный – заглавной буквой (А), а рецессивный – строчной (а). Если в обеих гомологичных хромосомах находятся одинаковые аллельные гены (два доминантных – АА или два рецессивных – (аа), такой организм называется гомозиготным, так как он образует один тип гамет и не даёт расщепления при скрещивании с таким же по генотипу организмом.

Если в гомологичных хромосомах локализованы разные гены одной аллельной пары (Аа), то такой организм называется гетерозиготным по данному признаку. Он образует два типа гамет и при скрещивании с таким же по генотипу организмом даёт расщепление. Совокупность всех свойств и признаков организма называется фенотипом. Фенотип развивается на базе определённого генотипа в результате взаимодействия с условиями внешней среды. Отдельный признак называется феном.

Кариотип – это совокупность метафазных хромосом, характерных для определенного вида организмов. Постоянство кариотипа поддерживается с помощью точных механизмов митоза и мейоза.

Изучение кариотипов и их изменчивости важно для здравоохранения (многие генетические заболевания связаны с изменением кариотипа), селекции (многие сорта растений различаются по кариотипу) и экологического биомониторинга (кариотип может изменяться под воздействием экологических факторов).

Кариотип используется в качестве видовой характеристики (существует особый раздел систематики – кариосистематика ). Кариотипический критерий является одним из важнейших критериев вида. Сущность этого критерия заключается в том, что все особи данного вида характеризуются определенным кариотипом. В понятие «кариотип» включается число хромосом, их размеры, морфология , особенности продольной дифференцировки .

Если оба плеча хромосомы равны по длине, то такая хромосома называется метацентрической , если неравны – то такая хромосома называется субметацентрической , если же одно из плеч очень короткое, то такая хромосома называется акроцентрической . Конечные участки хроматид называются теломеры . У некоторых хромосом в области теломер имеются удаленные структуры (спутники ); это спутничные хромосомы .

При специальных методах окраски (дифференциальная окраска) видно, что хромосомы состоят из чередующихся участков – дисков: С, Т, R, G, N, Q. Чередование дисков специфично для каждой хромосомы. Таким образом, метафазные хромосомы обладают индивидуальностью.

Минимально возможный набор хромосом в клетке называется геном .

Термин геном (нем. Genom) предложил немецкий ботаник Ганс Винклер в 1920 г. для обозначения минимального набора хромосом. Такое представление о геноме сохраняется и в современной цитогенетике . Однако вскоре было доказано, что в состав хромосом входит ДНК (Фёльген, 1924), а к середине XX в. было установлено, что именно ДНК является носителем наследственной информации (О. Эвери с сотр., 1944; Дж. Уотсон и Ф. Крик, 1953). Поэтому в настоящее время в молекулярной генетике термином геном все чаще обозначают минимальную упорядоченную совокупность всех молекул ДНК в клетке .

Геном – это характеристика вида, а не особи. Геномы разных видов обозначаются латинскими буквами (А , B , C …). Кариотипы «чистых» видов включают только один геном (например, в клетках культурной ржи содержится геном R ). Кариотипы гибридов и видов гибридного происхождения включают несколько геномов (например, в клетках тритикале содержатся геномы A , B и R ; в клетках твердых пшениц – геномы А и В отдельных видов А и G )). Тогда геном «чистого» вида можно назвать элементарным, а геном гибрида – комплексным.

Число хромосом в геноме называется основным хромосомным числом и обозначается символом х . Например, для голосеменных растений х =12, а для покрытосеменных основное число х исходно равно 7 (хотя у ряда покрытосеменных встречаются и иные основные хромосомные числа: х =12 у пасленовых, х =19 у ивовых).

Изучение геномов важно с точки зрения медицины, теории селекционного процесса и теории эволюции.

Организацию генома удобнее рассмотреть на примере многоклеточных животных. У этих организмов различают два типа клеток: соматические клетки, из которых построено тело (сома ) организмов, и половые клетки (гаметы). Число хромосом в половых клетках большинства животных соответствует основному хромосомному числу и называется гаплоидным числом хромосом (обозначается символом n ), тогда x =n . В гаплоидном наборе каждая хромосома существует в единственном числе (представлена одним гомологом). В соматических клетках содержится удвоенный, или диплоидный набор хромосом , который обозначается символом 2 n . В диплоидном наборе каждая хромосома представлена двумя гомологами (исключение составляют половые хромосомы у гетерогаметного пола, например, у самцов большинства млекопитающих X и Y –хромосомы негомологичны).

Рассмотрим организацию генома человека на цитогенетическом уровне. Число хромосом в гаплоидном наборе (основное число) равно 23. Все хромосомы пронумерованы и распределены по классам. Из них к классу А относятся хромосомы 1, 2, 3; к классу В – хромосомы 4, 5; к классу С – хромосомы 6, 7, 8, 9, 10, 11, 12; к классу D – хромосомы 13, 14, 15; к классу Е – хромосомы 16, 17, 18; к классу F – хромосомы 19, 20; к классу G – хромосомы 21, 22. Перечисленные хромосомы называются аутосомы , они имеются и у мужчин, и у женщин. В диплоидном наборе (2 n =46) каждая аутосома представлена двумя гомологами. Двадцать третья хромосома является половой хромосомой (гоносомой), она может быть представлена или X или Y –хромосомой. Половые хромосомы у женщин представлены двумя X –хромосомами, а у мужчин одной X –хромосомой и одной Y –хромосомой.

Основные закономерности наследования были изучены Г. Менделем и изложены в его книге «Опыты над растительными гибридами» (1865). Он проводил скрещивание растений гороха, при котором родительские формы анализировались по одной паре альтернативных признаков. Такое скрещивание называется моногибридным. Если у родительских форм учитываются две пары альтернативных признаков, скрещивание называется дигибридным, более двух признаков – полигибридным. Прежде чем проводить опыты, Г. Мендель получил чистые линии горохов с альтернативными признаками, т. е. гомозиготные доминантные (АА) - жёлтые и гомозиготные рецессивные (аа) зелёные особи, которые в дальнейшем скрещивались друг с другом.

Запись скрещивания проводится так: в первой строке пишут букву Р (родители), далее генотип женского организма, знак скрещивания Х и генотип мужского организма; во второй строке записывают букву G (гаметы) и гаметы женской и мужской особей, каждая гамета берётся в кружочек; в третьей строке ставят букву F (потомки) и записывают генотипы потомков:

При выписывании гамет нужно придерживаться следующих принципов: из каждой пары аллельных генов в гамету должен попасть один ген; если организм гомозиготен (например, АА), то все гаметы, сколько бы их ни образовалось, будут содержать только один ген (А), т. е. все они будут однотипны, и, следовательно, гомозиготный организм образует один тип гамет; если организм гетерозиготен (Аа), то в процессе мейоза одна хромосома с геном А попадает в одну гамету, а вторая гомологичная хромосома с геном а попадёт в другую гамету (гетерозиготный организм по одной паре генов будет образовывать два типа гамет: Аа – А + а.

При анализе результатов скрещивания оказалось, что все потомки в первом поколении одинаковы по фенотипу (проявляется доминантный признак жёлтой окраски – закон доминирования) и генотипу (гетерозиготны), откуда и название первого закона Менделя – закон единообразия гибридов первого поколения. Он формулируется следующим образом: при скрещивании гомозиготных особей, отличающихся по одной паре альтернативных признаков, наблюдается единообразие гибридов первого поколения как по фенотипу, так и по генотипу.

При скрещивании гибридов первого поколения между собой (т. е. гетерозиготных особей) получается следующий результат:

Р (F1) Аа х Аа

F2 АА Аа Аа аа

Каждая из гетерозигот образует по два типа гамет, т. е. возможно получение четырёх их сочетаний:

1) яйцеклетка с геном А оплодотворяется сперматозоидом с геном А – получится генотип АА;

2) яйцеклетка с геном А оплодотворяется сперматозоидом с геном а – генотип Аа;

3) яйцеклетка с геном а оплодотворяется сперматозоидом с геном А – генотип Аа;

4) яйцеклетка с геном а оплодотворяется сперматозоидом с геном а – генотип аа.

Получаются зиготы: 1АА, 2 Аа, 1 аа, вероятность образования которых равная. По фенотипу особи АА и Аа неотличимы (жёлтые), поэтому наблюдается расщепление в отношении 3: 1 (три части потомков с жёлтыми семенами и одна часть – с зелёными). По генотипу соотношение будет: 1АА (одна часть - жёлтые гомозиготы) : 2Аа (две части – жёлтые гетерозиготы) : 1аа (одна часть – зелёные гомозиготы).

Второй закон Менделя – закон расщепления – формулируется следующим образом: при скрещивании гибридов первого поколения наблюдается расщепление в соотношении 3: 1 по фенотипу и 1: 2: 1 по генотипу.

Доминантный ген не всегда полностью подавляет действие рецессивного гена. В таком случае все гибриды первого поколения не воспроизводят признаки родителей – имеет место промежуточный характер наследования. Во втором поколении доминантные гомо - и гетерозиготы будут отличаться фенотипически и расщепление по фенотипу и генотипу одинаково (1: 2: 1).

Например, при скрещивании гомозиготных растений ночной красавицы с красными (АА) и белыми (аа) цветками первое поколение получается с розовыми цветками (промежуточное наследование). Во втором поколении расщепление по фенотипу, как и по генотипу, будет: 1 часть растений с красными цветками, две части – с розовыми и одна часть – с белыми.

Красные Белые

Р (F1) Аа х Аа

F2 АА Аа Аа аа

Красные Розовые Белые

Неполное доминирование довольно распространённое явление: оно обнаруживается, например, при наследовании окраски шерсти у крупного рогатого скота и овец, некоторых биохимических признаков у человека (разные варианты гемоглобинов).

Для объяснения установленных Менделем закономерностей наследования Бетсоном была предложена гипотеза чистоты гамет . По результатам моногибридного скрещивания мы убеждаемся, что, хотя у гетерозигот проявляется лишь доминантный признак, рецессивный ген не только не утрачивается, но он у гетерозиготного организма не сливается с доминантным, не разбавляется, не изменяется, а остаётся в чистом аллельном состоянии. Как было показано позже, аллельные гены расположены в одинаковых локусах гомологичных хромосом и в процессе мейоза попадают в разные гаметы. Следовательно, в гамете может присутствовать одновременно только один из аллельных генов, определяющий развитие одного из альтернативных признаков, и они являются «чистыми» по данному признаку. У гетерозиготного организма этот процесс выглядит так:

Схема расхождения гомологичных хромосом при мейозе

Кратко гипотезу чистоты гамет можно свести к следующим двум положениям:

1) у гибридного организма гены не гибридизируются (не смешиваются) и находятся в чистом аллельном состоянии;

2) в процессе мейоза в гамету попадает только один ген из аллельной пары.

Гипотеза чистоты гамет устанавливает, что законы расщепления есть следствие случайного сочетания гамет, несущих разные гены. Однако общий результат оказывается не случайным, так как здесь проявляется статистическая закономерность, определяемая большим числом равновероятных встреч гамет. Таким образом, расщепление при моногибридном скрещивании гетерозиготных организмов 3: 1 в случае полного доминирования или 1: 2: 1 при неполном доминировании следует рассматривать как биологическую закономерность, основанную на статистических данных.

Цитологические основы гипотезы чистоты гамет и первых двух законов Менделя составляют закономерности расхождения гомологичных хромосом и образования гаплоидных половых клеток в процессе мейоза.

В некоторых случаях необходимо установить генотип особи с доминантным признаком, так как при полном доминировании гомозигота (АА) и гетерозигота (Аа) фенотипически неотличимы. Для этого применяют анализирующее скрещивание, при котором данный организм м неизвестным генотипом скрещивают с гомозиготным рецессивным по данной аллели. Возможны два варианта результатов скрещивания:

1) Р АА х аа 2) Р Аа х аа

G А а G А а а

F Аа F Аа аа

Если в результате такого скрещивания получено единообразие гибридов первого поколения, то анализируемый организм является гомозиготным, а если в F1 произойдёт расщепление 1: 1, то особь гетерозиготна. Анализирующее скрещивание широко применяется в селекции.

Задачи для решения:

1. При скрещивании красноплодной и белоплодной земляники были получены только розовые формы. Написать генотипы исходных и гибридных форм, если известно, что ген красной окраски не полностью доминирует над геном, контролирующим белую окраску.

2.Если у пшеницы ген, определяющий малую длину колоса, не полностью доминирует над геном, ответственным за возникновение колоса большой длины, то какой длины колосья могут появиться при скрещивании 2-х растений, имеющих колосья средней длины.

3. У собак жёсткая шерсть доминантна, мягкая рецессивна. Два жёсткошёрстных родителя дают жёсткошёрстного щенка. С кем его нужно скрестить, чтобы выяснить, имеет ли он в генотипе аллель мягкошёрстности?

наследственность мутация генная болезнь

Наслемдственность -- способность организмов передавать свои признаки и особенности развития потомству. Благодаря этой способности все живые существа (растения, грибы, или бактерии) сохраняют в своих потомках характерные черты вида. Такая преемственность наследственных свойств обеспечивается передачей их генетической информации. Носителями наследственной информации у организмов являются гены.

Методы изучения наследственности человека

· Генеалогический метод -- составление родословного дерева многих поколений и изучение типа наследования (доминантный или рецессивный, сцепленный с полом или аутосомный), частоты и интенсивности проявления наследственных свойств. Результатом изучения обычно является определение типа наследования, а также риска проявления наследственных нарушений у потомков;

· Цитогенетический метод -- изучение хромосомных наборов здоровых и больных людей. Результат изучения -- определение количества, формы, строения хромосом, особенности хромосомных наборов обоих полов, а также хромосомных нарушений;

· Биохимический метод -- изучение изменений в биологических параметрах организма, связанных с изменением генотипа. Результат изучения -- определение нарушений в составе крови, в околоплодной жидкости и т. д.;

· Близнецовый метод -- изучение генотипических и фенотипических особенностей однояйцевых и разнояйцевых близнецов. Результат изучения -- определение относительного значения наследственности и окружающей среды в формировании и развитии человеческого организма;

· Популяционный метод -- изучение частоты встречаемости аллелей и хромосомных нарушений в популяциях человека. Результат изучения -- определение распространения мутаций и естественного отбора в популяциях человека.

ь Моногибридное скрещивание

М оногибридным называется скрещивание, при котором родители различаются по проявлению лишь одного из признаков. В одном из опытов Г. Мендель в качестве родителей выбрал особей чистых линий (то есть особей, которые при скрещивании друг с другом на протяжении многих поколений давали потомство с набором тех же самых признаков). Он исследовал наследование окраски семян гороха -- она может быть желтой или зеленой. Г. Мендель ставил опыт таким образом, что в одном эксперименте материнские растения имели желтые семена, а отцовские -- зеленые, а в другом -- наоборот. Такая система из двух скрещиваний носит название реципрокного скрещивания. При этом одно из скрещиваний (любое) называется ПРЯМЫМ, а другое -- ОБРАТНЫМ. (в данном случае результаты прямого и обратного скрещивания были одинаковыми.) Из гибридов первого поколения Г. Мендель путем самоопыления получал гибриды второго поколения и т. д. В нашем случае схема скрещивания будет выглядеть так.

зеленые семена х желтые семена

Из схемы видно, что у всех особей F1 проявился признак только одного родителя, а именно -- желтая окраска семян. Проявляющийся в первом поколении гибридов признак Г. Мендель назвал доминантным (а само явление -- доминированием), а исчезающий -- редессивным . Описанная закономерность известна под названием закона-(или правила) единообразия первого поколения. Иногда ее также называют первым законом Менделя, что не совсем верно. Сам ученый формулировал лишь «закон комбинации различающихся признаков», включающий в себя, по сути, правило расщепления и правило независимого наследования. Кроме того, важно заметить, что правило единообразия гибридов первого поколения отражает не закономерности наследования признаков, а особенности их реализации в организме. При размножении гибридов F1 во втором поколении, наряду с доминантным, у части особей проявился отсутствовавший в фенотипе гибридов" первого поколения рецессивный признак. Г. Мендель обнаружил, что особей с доминантным признаком примерно втрое больше, чем с рецессивным (то есть произошло расщепление в соотношении 3: 1). Эти результаты легли в основу закона расщепления. Дальнейшее размножение гибридов F2 показало, что особи с рецессивным признаком давали в ряду поколений только особей, у которых- также проявлялся лишь рецессивный признак; а группа с доминантным признаком оказалась разнородной. Одна ее часть в ряду поколений давала только особей с проявлением доминантного признака, а другая при размножении расщеплялась в соотношении по фенотипу 3:1. Рассматриваемые организмы диплоидны, то есть состоят из клеток, содержащих двойной набор хромосом. Гомологичные хромосомы имеют идентичные участки -- гены, в которых содержится информация о том или ином признаке, например, цвете семян. Однако признак этот может проявляться в фенотипе различным образом -- семена могут быть зелеными, а могут быть и желтыми. Собственно цвет (желтый или зеленый) определяется тем или иным состоянием гена (последовательностью нуклеотидов в цепи ДНК). В рассматриваемом случае ген окраски семян имеет две альтернативные формы (аллеля). Аллели -- формы (их может быть не только две, но и больше -- явление множественного аллелизма) одного и того же гена, располагающиеся в одинаковых участках (локусах) гомологичных хромосом. Таким образом, соматические клетки содержат два аллеля одного гена. При этом, несмотря на то, что аллели могут быть разными (гетерозиготное состояние), в фенотипе проявляется только один из них -- он называется доминантным. Рецессивный же аллель влияет на фенотип только в том случае, если он, находится в обоих гомологичных хромосомах (гомозиготное состояние). Образующиеся в результате мейоза гаплоидные гаметы содержат всего лишь один аллель того или иного гена. На схеме доминантные аллели обозначаются латинской заглавной буквой, а рецессивные -- прописной (буква при этом используется одна и та же, что подчеркивает, что оба аллеля ответственны за проявление одного и того же признака). Схема нашего скрещивания с учетом сказанного будет выглядеть так:

В скрещивании участвуют и особи чистых линий. Это означает, что они гомозиготны по выбранному признаку. При оплодотворении материнская и отцовская гаметы сливаются. Поскольку доминантный аллель подавляет работу рецессивного, а все гибриды F1 имеют одинаковый гетерозиготный генотип Аа, у них проявляется желтая окраска семян. Гибриды F1 способны образовывать 2 типа гамет: А и а, каждая из которых с равной вероятностью может слиться с любой другой. В результате в F2 образуются следующие генотипы: АА, аа, Аа и Аа (или: АА, 2Аа, аа). Как видно, генотипов с двумя рецессивными генами втрое меньше. Этим объясняется расщепление по фенотипу 3:1. Расщепление по генотипу составляет 1: 2: 1, то есть 1АА: 2Аа: 1аа. Гомозиготы АА и аа могут образовывать гаметы только одного типа, поэтому при самоопылении у их потомков расщепления не происходит. Гетерозиготы же Аа размножаются аналогично гибридам F1.

ь Дигибридное скрещивание

Г. Мендель продолжил свои исследования, но для экспериментов выбрал растения, отличающиеся друг от друга двумя признаками, то есть по двум парам аллелей. Скрещивание таких организмов называется дигибридным . В одном из экспериментов семена гороха отличались не только окраской, но и формой (часть из них была гладкой, а часть -- морщинистой):

Р желтые гладкие семена х зеленые морщинистые семена

Все потомки первого поколения имели гладкие семена желтого цвета. Во втором поколении гибридов проявилось уже четыре фенотипа: желтые гладкие, зеленые гладкие, желтые морщинистые и зеленые морщинистые семена. Причем расщепление по фенотипу каждого признака в отдельности было таким же, как и при моногибридном скрещивании -- количество желтых семян было втрое больше, чем зеленых, а количество гладких -- втрое больше, чем морщинистых. На основании этого был сформулирован еще один принцип, который известен под названием закон независимого наследования (распределения) признаков, суть которого состоит в том, что альтернативные проявления одного признака могут сочетаться с любыми альтернативными проявлениями другого признака. Попробуем объяснить этот закон на основании хромосомной теории наследственности. Согласно этой теории аллели локализуются в гомологических хромосомах. В опытах Г. Менделя гены, кодирующие цвет и форму семян, располагались в разных хромосомах (обозначим ген окраски как А -- желтая и а -- зеленая, а ген формы как В -- гладкая и b -- морщинистая). В протекании процесса мейоза, приводящего к образованию гамет, есть одно непреложное правило: гомологичные хромосомы должны разойтись к разным полюсам и «уйти» в разные гаметы. А вот какая именно из гомологических хромосом (с доминантным или рецессивным геном -- это, разумеется, относится только к гете-розиготам) отойдет к какому полюсу, дело случая. В нашем примере:

Различные варианты генотипов (и соответствующих им фенотипов), образующиеся при слиянии гамет в результате скрещивания, удобно рассчитывать по решетке Пеннета, располагая их в ячейках, на которые она поделена.

ь Сцепление генов

Как выяснилось закон независимого распределения генов справедлив лигаь для генов, расположенных в разных хромосомах. На самом деле в любом организме число генов очень велико (десятки тысяч), а число их носителей -- хромосом -- ограничено: так, у человека 23 пары хромосом, у кукурузы -- 10, а у дрозофилы -- всего 4. Соответственно, в каждой хромосоме должно быть по несколько сотен или тысяч генов. Из того факта, что при образовании гамет к полюсам клетки в мейозе отходят хромосомы, а не гены, следует, что гены, локализованные в одной хромосоме, должны наследоваться вместе. Это подтверждают опыты Томаса Ханта Моргана, проведенные на плодовой мушке дрозофиле. Он исследовал дигибридное скрещивание для двух признаков: цвета тела (серое и черное) и длины крыла (длинные и зачаточные).

· Р серое тело, длинные крылья (GGLL) Х черное тело, зачаточеные крылья (ggll)

· гаметы: GL gl

· F1 серое тело, длинные крылья GgLl

· Поскольку оба гена лежат в одной хромосоме, образуется только 2 типа гамет: GL и gl

Таким образом, в F2 наблюдается расщепление по фенотипу 3: 1 вместо ожидаемого в соответствии с генетикой Менделя 9:3:3:1. Закономерность, суть которой сводится к тому, что гены, локализованные в одной хромосоме, наследуются преимущественно вместе, известна под названием закона Моргана. Слово преимущественно не случайно, ибо сам Морган обнаружил и объяснил отклонения от этого правила. Так как гены, лежащие в одной хромосоме, наследуются вместе, их называют сцепленными. Все гены одной хромосомы образуют ГРУППУ сцепления. Введем еще одно понятие. Анализирующим называется скрещивание изучаемого организма с формой, имеющей рецессивный гомозиготный генотип и соответственно образующей только один тип гамет с рецессивными аллелями. При анализирующем скрещивании (в данном случае оно является также и возвратным) серой длиннокрылой гетерозиготы из F1 с черной короткокрылой гомозиготой из родительского поколения Р у Т. X. Моргана помимо форм с ожидаемыми фенотипами -- серое тело, длинные крылья и черное тело, зачаточные крылья -- в соотношении 1: 1 появились особи со смешанными признаками:

Р серое тело, длинные крылья (GgLl) Х черное тело, зачаточеные крылья (ggll)

Fа(анализир.) 41,5 % серое тело, длинные крылья 41,5 % черное тело, зачаточные крылья 8,5 % серое тело, зачаточные крылья 8,5 % черное тело, длинные крылья

Т. X. Морган, объясняя полученные результаты, предположил, что гомологичные хромосомы, образующие на первой стадии мейоза хиазмы (перекресты), способны обмениваться отдельными участками в результате возникающих разрывов и последующих рекомбинаций. Это явление было названо кроссинговером. Оно приводит к тому, что аллели из гомологичных хромосом меняются друг с другом местами. Таким образом, в данном случае, кроме «нормальных» гамет GL и gl, образуются (в гораздо меньшем количестве) гаметы GI и gL. Именно они и определяют появление «неожиданных» особей. Процесс обмена участками между гомологичными хромосомами приводит к генетической рекомбинации. Особей, образующихся из гамет с новым сочетанием аллелей, называют рекомбинантными. Чем дальше друг от друга на хромосоме расположены гены, тем чаще между ними происходит кроссинговер и тем выше процент появляющихся рекомбинантных особей. На этом явлении основано построение генетических карт -- определение последовательности расположения генов в хромосоме и примерного расстояния между ними.

ь Взаимодействие генов

Более поздними исследованиями было показано, что, кроме сцепления, отклонения от менделевского наследования вызываются еще рядом причин, одной из которых являются эффекты, связанные с взаимодействием генов. Оказалось, что как аллельные, так и неаллельные гены способны взаимодействовать друг с другом, вызывая появление новых признаков. Взаимодействие аллельных генов Неполное доминирование -- явление, при котором доминантный ген не полностью подавляет работу рецессивного, в результате развивается промежуточный признак. Примером может служить окраска цветка у растения ночная красавица с расщеплением по фенотипу в F2 1:2:1. Р красный цветок (АА) Х белый цветок (аа)

· F1 фенотип: розовый цветок генотип: Аа гаметы: А А Х а а

· F2 фенотип: 1/4 красный цветок 2/4 розовый цветок 1/4 белый цветок генотип: АА Аа аа

Множественный аллелизм -- явление существования более двух альтернативных аллельных генов, имеющих различные проявления в фенотипе. Например, четыре группы крови у человека определяются сочетанием в генотипе аллелей А, В и О одного и того же гена I. Взаимодействие неаллельных генов Комплементарное взаимодействие -- (взаимодополнительное действие генов) -- явление, когда признак развивается только при взаимном действии двух доминантных неаллельных генов, каждый из которых в отдельности не вызывает развитие признака. Комбинативное взаимодействие -- явление, когда два неаллельных гена, взаимодействуя между собой обусловливают развитие нового признака, при этом каждый ген имеет собственное фенотипическое проявление. Эпистаз -- тип взаимодействия генов, при котором один ген подавляет действие другого (неаллельного) гена. Полимерия -- явление, когда несколько неаллель-ных генов отвечают за сходное воздействие на развитие одного и того же признака. Чем больше таких генов присутствует в генотипе, тем ярче проявляется признак. Часто явление полимерии наблюдается при наследовании количественных признаков -- удойность коров, яй-ценосность, вес тела и т. д. Плейотролия -- множественное действие гена. В этом случае один ген отвечает за развитие нескольких признаков.

Законы Менделя - это принципы передачи наследственных признаков от родительских организмов к их потомкам, вытекающие из экспериментов Грегора Менделя . Эти принципы послужили основой для классической генетики и впоследствии были объяснены как следствие молекулярных механизмов наследственности. Хотя в русскоязычных учебниках обычно описывают три закона, «первый закон» не был открыт Менделем. Особое значение из открытых Менделем закономерностей имеет «гипотеза чистоты гамет».

Законы Менделя


Закон единообразия гибридов первого поколения

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака - на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный ), всегда подавлял другой (рецессивный) .

Закон расщепления признаков

Определение

Закон расщепления, или второй закон Менделя : при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

Скрещиванием организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание .

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть - рецессивный, называется расщеплением. Следовательно, расщепление - это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Объяснение

Закон чистоты гамет : в каждую гамету попадает только одна аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный «Закон» носит наиболее общий характер (выполняется при наиболее широком круге условий).

Гипотеза чистоты гамет . Мендель предположил, что при образовании гибридов наследственные факторы не смешиваются, а сохраняются в неизменном виде. У гибрида присутствуют оба фактора - доминантный и рецессивный, но проявление признака определяет доминантный наследственный фактор , рецессивный же подавляется. Связь между поколениями при половом размножении осуществляется через половые клетки - гаметы . Следовательно, необходимо допустить, что каждая гамета несет только один фактор из пары. Тогда при оплодотворении слияние двух гамет, каждая из которых несет рецессивный наследственный фактор, будет приводить к образованию организма с рецессивным признаком, проявляющимся фенотипически . Слияние же гамет, каждая из которых несет доминантный фактор, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении рецессивного признака одного из родителей может быть только при двух условиях: 1) если у гибридов наследственные факторы сохраняются в неизменном виде; 2) если половые клетки содержат только один наследственный фактор из аллельной пары. Расщепление потомства при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы генетически чисты, то есть несут только один ген из аллельнои пары. Гипотезу (теперь ее называют законом) чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один аллель из пары аллелей данного гена.

Известно, что в каждой клетке организма в большинстве случаев имеется совершенно одинаковый диплоидный набор хромосом . Две гомологичные хромосомы обычно содержат каждая по одному аллелю данного гена. Генетически «чистые» гаметы образуются следующим образом:

На схеме показан мейоз клетки с диплоидным набором 2n=4 (две пары гомологичных хромосом). Отцовские и материнские хромосомы обозначены разным цветом.

В процессе образования гамет у гибрида гомологичные хромосомы во время I мейотического деления попадают в разные клетки. При слиянии мужских и женских гамет получается зигота с диплоидным набором хромосом. При этом половину хромосом зигота получает от отцовского организма, половину - от материнского. По данной паре хромосом (и данной паре аллелей) образуются два сорта гамет. При оплодотворении гаметы, несущие одинаковые или разные аллели, случайно встречаются друг с другом. В силу статистической вероятности при достаточно большом количестве гамет в потомстве 25 % генотипов будут гомозиготными доминантными, 50 % - гетерозиготными, 25 % - гомозиготными рецессивными, то есть устанавливается отношение 1АА:2Аа:1аа (расщепление по генотипу 1:2:1). Соответственно по фенотипу потомство второго поколения при моногибридном скрещивании распределяется в отношении 3:1 (3/4 особей с доминантным признаком, 1/4 особей с рецессивным). Таким образом, при моногибридном скрещивании цитологическая основа расщепления признаков - расхождение гомологичных хромосом и образование гаплоидных половых клеток в мейозе .

Закон независимого наследования признаков

Определение

Закон независимого наследования (третий закон Менделя) - при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

Объяснение

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

Основные положения теории наследственности Менделя

В современной интерпретации эти положения следующие:

  • За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы - гены (термин «ген» предложен в 1909 г. В.Иоганнсеном)
  • Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один из них получен от отца, другой - от матери.
  • Наследственные факторы передаются потомкам через половые клетки. При формировании гамет в каждую из них попадает только по одному аллелю из каждой пары (гаметы «чисты» в том смысле, что не содержат второго аллеля).

Условия выполнения законов Менделя

В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования.

Условия выполнения закона расщепления при моногибридном скрещивании

Расщепление 3: 1 по фенотипу и 1: 2: 1 по генотипу выполняется приближенно и лишь при следующих условиях:

  1. Изучается большое число скрещиваний (большое число потомков).
  2. Гаметы, содержащие аллели А и а, образуются в равном числе (обладают равной жизнеспособностью).
  3. Нет избирательного оплодотворения: гаметы, содержащие любой аллель, сливаются друг с другом с равной вероятностью.
  4. Зиготы (зародыши) с разными генотипами одинаково жизнеспособны.

Условия выполнения закона независимого наследования

  1. Все условия, необходимые для выполнения закона расщепления.
  2. Расположение генов, отвечающих за изучаемые признаки, в разных парах хромосом (несцепленность).

Условия выполнения закона чистоты гамет

  1. Нормальный ход мейоза. В результате нерасхождения хромосом в одну гамету могут попасть обе гомологичные хромосомы из пары. В этом случае гамета будет нести по паре аллелей всех генов, которые содержатся в данной паре хромосом.

Тема: 7. Основные закономерности наследования признаков.

Генетика - наука о закономерностях наследственности и изменчивости. Гибридологический метод изучения наследственности. Законы наследования, установленные Г. Менделем. Моногибридное скрещивание. Единообразие первого поколения. Доминантные и рецессивные признаки. Аллельные гены, их локализация в хромосомах. Фенотип, генотип. Гомозигота и гетерозигота. Промежуточный характер наследования. Законы расщепления признаков. Статистический характер наследования. Гипотеза чистоты гамет. Анализирующее скрещивание. Дигибридное скрещивание. Закон независимого наследования. Цитологические основы дигибридного скрещивания. Сцепленное наследование. Нарушения сцепления. Перекрест хромосом. Новообразования при скрещивании. Генотип как целостная исторически сложившаяся система. Хромосомная теория наследственности. Генетика пола. Значение генетики для медицины и здравоохранения.

Общие указания. Генетика как наука возникла на базе эволюционного учения Ч. Дарвина, поэтому при повторении материала по данной теме следует вспомнить о преемственности терминов и понятий. Материал по генетике удобней начинать с повторения и уточнения терминологии, поэтому в первую очередь необходимо усвоить буквенную символику, принятую в генетике, и лишь после этого приступить к повторению законов.

1. Повторить учебный материал.

2. Ответить на вопросы самоконтроля.

3. Выполнить контрольную работу.

Буквенная символика по Г. Менделю:

Р - перента - родители. Родительские организмы, взятые для скрещивания, отличающиеся наследственными задатками.

F - филие - дети. Гибридное потомство.

А - доминантный признак желтой окраски семян гороха.

а - рецессивный признак зеленой окраски семян гороха.

В - доминантный признак гладкой поверхности.

в - рецессивный признак морщинистой поверхности.

Аа - аллельные гены окраски.

Вв - аллельные гены поверхности.

АА - доминантная гомозигота.

аа - рецессивная гомозигота.

Аа - гетерозигота при моногибридном скрещивании.

АаВв - гетерозигота при дигибридном скрещивании.

При изучении работ Г. Менделя обратите внимание на причины успеха его опытов и наблюдений. Положительные результаты его опытов обеспечили следующие предпосылки: применение гибридологического метода, наблюдение за одной парой альтернативных /противоположных/ признаков, которые оказались не сцепленными, самоопыляемость гороха. Все это дало возможность наблюдать за передачей наследственных признаков на протяжении нескольких поколений, при этом признаков было мало и все они были под контролем. Следует иметь в виду, что Г. Мендель установил закономерности наследования, а не наследственности. Признаки, передающиеся от поколения к поколению, он назвал наследственными зачатками, т.к. о гене тогда еще не существовало понятия.

Генетика как наука сформировалась в начале ХХ в.. В ее развитие внесли вклад ученые разных стран: Г. Де Фриз, К. Корренс, Э. Чермак и другие. В настоящее время ее значение велико как для теории, так и для практики сельского хозяйства, медицины, микробиологии, биоценологии, и др..

ЗАПОМНИТЕ!

Хромосомная теория наследственности (Т. Морган)

Хромосомы с локализованными в них генами - основные материальные носители наследственности.

Гены находятся в хромосомах и в пределах одной хромосомы образуют одну группу сцепления. Число групп сцепления равно гаплоидному числу хромосом.

В хромосомах гены расположены линейно.

В мейозе между гомологичными хромосомами может произойти кроссинговер, частота которого пропорциональна расстоянию между генами.

Законы и закономерности генетики

Название

Формулировка

Правило единообразия первого поколения гибридов (первый закон)

Г. Мендель, 1865 г.

При моногибридном скрещивании у гибридов первого поколения проявляются признаки только доминантные признаки - оно фенотипически единообразно

Закон расщепления (второй закон)

Г. Мендель, 1865 г.

Пир самоопылении гибридов первого поколения в потомстве происходит расщепление признаков в отношении 3: 1 - образуется две фенотипические группы - доминантная и рецессивная

Закон независимого наследования признаков (третий закон)

Г. Мендель

При скрещивании двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях. При дигибридном скрещивании двух гетерозигот (особей F1) между собой, во втором поколении гибридов (F2) , будет наблюдаться расщепление признаков по фенотипу в соотношении 9:3:3:1.

Гипотеза чистоты гамет

Г. Мендель, 1865 г.

Находящиеся в каждом организме пары альтернативных признаков не смешиваются и при образовании гамет по одному от каждой пары переходят в них в чистом виде

Закон сцепленного наследования

Т. Морган, 1911 г.

Сцепленные гены, локализованы в одной хромосоме, наследуются вместе и не обнаруживают независимого распределения

Закон гомологических рядов

Н.И. Вавилов, 1935 г.

Генетически близкие виды и роды характеризуются сходными рядами наследственной изменчивости

Вопросы для самоконтроля:

1. Что служит вопросом изучения генетики?

2. Что такое наследственность?

3. Что такое изменчивость?

4. Какие существуют формы изменчивости?

5. Как называют признаки и свойства организма, передающиеся по наследству?

6. Какая разница между гомозиготой и гетерозиготой?

7. В какие годы и в какой стране жил и работал Г. Мендель и на каких растениях проводил он свои опыты?

8. Благодаря чему Г. Менделю в отличие от других удалось вскрыть законы наследования признаков?

9. При каком способе опыления были получены гибриды первого поколения?

10. Единообразны ли по фенотипу или генотипу особи первого поколения и что для них характерно?

11. При каком способе опыления были получены гибриды второго поколения?

12. Что значит полное и неполное доминирование?

13. Является ли у семян гороха гены желтой окраски и гладкой поверхности аллельными?

14. Как распределяются неаллельные несцепленные гены гибридов второго поколения?

15. Какие гены называются аллельными?

Выполните контрольную работу

1. По каким признакам Г. Мендель избрал горох объектом своих исследований (перекрестноопыляющийся, самоопыляющийся; однолетник, многолетник; имеются контрастные признаки или сглаженные признаки)?

2. Сколько альтернативных признаков учитывается при моногибридном скрещивании (1,2,3,4, и более)?

3. В каком случае выделяют признаки доминантные и рецессивные (сходство, контрастность, неодновременность появления)?

4. Как называют признаки гибрида, проявляющиеся в первом поколении (доминантные, рецессивные)?

5. Как называют зиготу, из которой развиваются гибриды первого поколения (гомозигота, гетерозигота)?

6. Какие гаметы образуются у гибридов первого поколения (гибридные, негибридные /чистые/)?

7. Какой способ опыления применял Г. Мендель для получения гибридов первого поколения (перекрестное, самоопыление, искусственное опыление)?

8. Какие признаки являются парными (желтый и зеленый цвет; желтый цвет и гладкая поверхность; гладкая и морщинистая поверхность)?

9. Где расположены гены парных признаков при дигибридном скрещивании (одна хромосома, разные хромосомы)?

10. Где расположены аллельные гены (одна хромосома, разные хромосомы)?

11. Как распределяются аллельные гены при мейозе (оказываются в одной клетке, оказываются в разных клетках)?

12. Как появляются в клетках гены парных признаков (складываются из родительских гамет, переходят по наследству, объединяются случайно)?

13. При каком скрещивании расщепление идет по формулам а) 1:2:1; б) 1:3:1; в) 1:8:3:3:1; в каком случае расщепление идет по генотипу, а в каком - по фенотипу?

Выполните контрольную работу

1. Какую информацию несет ген (синтез молекулы ДНК, образование организма, образование органа)?

2. Где расположен ген (цитоплазма, ядерный сок, хромосомы)?

3. В состав какой структуры входит ген (РНК, АТФ, ДНК, аминокислота)?

4. Где закодирована информация об одном конкретном признаке (РНК, ДНК, АТФ, ген)?

5. Сколько генов в хромосомах гибридного организма при моногибридном скрещивании отвечают за один и тот же признак (1,2,3, и более)?

6. Как называются гены, отвечающие за один и тот же признак (аллельные, альтернативные)?

7. Какие признаки называются альтернативными (одинаковые, противоположные) и в каких генах они закодированы (аллельные, неаллельные)?

8. Признаком генотипа или фенотипа будет рождение потомства аналогичного родителям, например рождение у собаки щенят, образование у яблони яблок?

9. Что изменяется генотип или фенотип, когда при переселении коров в горную местность они становятся низкорослыми?

10. Что больше подвергается изменению под влиянием внешней среды (генотип, фенотип)?

11. Вследствие чего возникает полиплоидная клетка (модификация, генная мутация, хромосомная мутация, нерасхождение хромосом)?

Проверь себя:

1. Что такое наследственность и изменчивость?

2. Что такое генетика? Предмет и задачи генетики?

3. Какие методы используются при генетических исследованиях?

4. Кто является основоположником генетики?

5. Какие этапы в развитии генетики можно выделить? С именами каких исследователей они связаны?

6. Какими свойствами характеризуется материал наследственности?

7. Какова химическая структура гена?

8. Чем отличаются кариотипы организмов разного пола?

9. Что такое гетеросомы и аутосомы?

10. Что такое гетерогаметный и гомогаметный пол?

11. В каком соотношении распределяются по полу особи вида? От чего это зависит?

12. Что такое признаки сцепленные с полом?

13. Что такое полигибридное и дигибридное скрещивание?

14. Проявляется ли при полигибридном скрещивании закон единообразия гибридов первого поколения /F1/?

15. Сколько типов гамет образуют организмы со следующими генотипами: ААВВССDD, ааввссddее, АаВвСсЕе?

16. Что такое ген? Каковы его свойства?

17. Что такое признак?

18. Что такое признак?

19. Что такое фенотип?

20. В каком году были впервые обнародованы законы наследования признаков?

Похожие статьи