Логарифм 10 по основанию 2. Логарифм - свойства, формулы, график

14.10.2019

Что такое логарифм?

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Что такое логарифм? Как решать логарифмы? Эти вопросы многих выпускников вводят в ступор. Традиционно тема логарифмов считается сложной, непонятной и страшной. Особенно - уравнения с логарифмами.

Это абсолютно не так. Абсолютно! Не верите? Хорошо. Сейчас, за какие-то 10 - 20 минут вы:

1. Поймете, что такое логарифм .

2. Научитесь решать целый класс показательных уравнений. Даже если ничего о них не слышали.

3. Научитесь вычислять простые логарифмы.

Причём для этого вам нужно будет знать только таблицу умножения, да как возводится число в степень...

Чувствую, сомневаетесь вы... Ну ладно, засекайте время! Поехали!

Для начала решите в уме вот такое уравнение:

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Приведены основные свойства логарифма, график логарифма, область определения, множество значений, основные формулы, возрастание и убывание. Рассмотрено нахождение производной логарифма. А также интеграл, разложение в степенной ряд и представление посредством комплексных чисел.

Определение логарифма

Логарифм с основанием a - это функция y(x) = log a x , обратная к показательной функции с основанием a: x(y) = a y .

Десятичный логарифм - это логарифм по основанию числа 10 : lg x ≡ log 10 x .

Натуральный логарифм - это логарифм по основанию числа e : ln x ≡ log e x .

2,718281828459045... ;
.

График логарифма получается из графика показательной функции зеркальным отражением относительно прямой y = x . Слева изображены графики функции y(x) = log a x для четырех значений основания логарифма : a = 2 , a = 8 , a = 1/2 и a = 1/8 . На графике видно, что при a > 1 логарифм монотонно возрастает. С увеличением x рост существенно замедляется. При 0 < a < 1 логарифм монотонно убывает.

Свойства логарифма

Область определения, множество значений, возрастание, убывание

Логарифм является монотонной функцией, поэтому экстремумов не имеет. Основные свойства логарифма представлены в таблице.

Область определения 0 < x < + ∞ 0 < x < + ∞
Область значений - ∞ < y < + ∞ - ∞ < y < + ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 x = 1 x = 1
Точки пересечения с осью ординат, x = 0 нет нет
+ ∞ - ∞
- ∞ + ∞

Частные значения


Логарифм по основанию 10 называется десятичным логарифмом и обозначается так:

Логарифм по основанию e называется натуральным логарифмом :

Основные формулы логарифмов

Свойства логарифма, вытекающие из определения обратной функции:

Основное свойство логарифмов и его следствия

Формула замены основания

Логарифмирование - это математическая операция взятия логарифма. При логарифмировании, произведения сомножителей преобразуются в суммы членов.

Потенцирование - это математическая операция обратная логарифмированию. При потенцировании заданное основание возводится в степень выражения, над которым выполняется потенцирование. При этом суммы членов преобразуются в произведения сомножителей.

Доказательство основных формул логарифмов

Формулы, связанные с логарифмами вытекают из формул для показательных функций и из определения обратной функции.

Рассмотрим свойство показательной функции
.
Тогда
.
Применим свойство показательной функции
:
.

Докажем формулу замены основания.
;
.
Полагая c = b , имеем:

Обратная функция

Обратной для логарифма по основанию a является показательная функция с показателем степени a .

Если , то

Если , то

Производная логарифма

Производная логарифма от модуля x :
.
Производная n-го порядка:
.
Вывод формул > > >

Для нахождения производной логарифма, его нужно привести к основанию e .
;
.

Интеграл

Интеграл от логарифма вычисляется интегрированием по частям : .
Итак,

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z :
.
Выразим комплексное число z через модуль r и аргумент φ :
.
Тогда, используя свойства логарифма, имеем:
.
Или

Однако, аргумент φ определен не однозначно. Если положить
, где n - целое,
то будет одним и тем же числом при различных n .

Поэтому логарифм, как функция от комплексного переменного, является не однозначной функцией.

Разложение в степенной ряд

При имеет место разложение:

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

\(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)

Объясним проще. Например, \(\log_{2}{8}\) равен степени, в которую надо возвести \(2\), чтоб получить \(8\). Отсюда понятно, что \(\log_{2}{8}=3\).

Примеры:

\(\log_{5}{25}=2\)

т.к. \(5^{2}=25\)

\(\log_{3}{81}=4\)

т.к. \(3^{4}=81\)

\(\log_{2}\)\(\frac{1}{32}\) \(=-5\)

т.к. \(2^{-5}=\)\(\frac{1}{32}\)

Аргумент и основание логарифма

Любой логарифм имеет следующую «анатомию»:

Аргумент логарифма обычно пишется на его уровне, а основание - подстрочным шрифтом ближе к знаку логарифма. А читается эта запись так: «логарифм двадцати пяти по основанию пять».

Как вычислить логарифм?

Чтобы вычислить логарифм - нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?

Например , вычислите логарифм: а) \(\log_{4}{16}\) б) \(\log_{3}\)\(\frac{1}{3}\) в) \(\log_{\sqrt{5}}{1}\) г) \(\log_{\sqrt{7}}{\sqrt{7}}\) д) \(\log_{3}{\sqrt{3}}\)

а) В какую степень надо возвести \(4\), чтобы получить \(16\)? Очевидно во вторую. Поэтому:

\(\log_{4}{16}=2\)

\(\log_{3}\)\(\frac{1}{3}\) \(=-1\)

в) В какую степень надо возвести \(\sqrt{5}\), чтобы получить \(1\)? А какая степень делает любое число единицей? Ноль, конечно!

\(\log_{\sqrt{5}}{1}=0\)

г) В какую степень надо возвести \(\sqrt{7}\), чтобы получить \(\sqrt{7}\)? В первую – любое число в первой степени равно самому себе.

\(\log_{\sqrt{7}}{\sqrt{7}}=1\)

д) В какую степень надо возвести \(3\), чтобы получить \(\sqrt{3}\)? Из мы знаем, что – это дробная степень, и значит квадратный корень - это степень \(\frac{1}{2}\) .

\(\log_{3}{\sqrt{3}}=\)\(\frac{1}{2}\)

Пример : Вычислить логарифм \(\log_{4\sqrt{2}}{8}\)

Решение :

\(\log_{4\sqrt{2}}{8}=x\)

Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма:
\(\log_{a}{c}=b\) \(\Leftrightarrow\) \(a^{b}=c\)

\((4\sqrt{2})^{x}=8\)

Что связывает \(4\sqrt{2}\) и \(8\)? Двойка, потому что и то, и другое число можно представить двойки:
\(4=2^{2}\) \(\sqrt{2}=2^{\frac{1}{2}}\) \(8=2^{3}\)

\({(2^{2}\cdot2^{\frac{1}{2}})}^{x}=2^{3}\)

Слева воспользуемся свойствами степени: \(a^{m}\cdot a^{n}=a^{m+n}\) и \((a^{m})^{n}=a^{m\cdot n}\)

\(2^{\frac{5}{2}x}=2^{3}\)

Основания равны, переходим к равенству показателей

\(\frac{5x}{2}\) \(=3\)


Умножим обе части уравнения на \(\frac{2}{5}\)


Получившийся корень и есть значение логарифма

Ответ : \(\log_{4\sqrt{2}}{8}=1,2\)

Зачем придумали логарифм?

Чтобы это понять, давайте решим уравнение: \(3^{x}=9\). Просто подберите \(x\), чтобы равенство сработало. Конечно, \(x=2\).

А теперь решите уравнение: \(3^{x}=8\).Чему равен икс? Вот в том-то и дело.

Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как \(x=\log_{3}{8}\).

Хочу подчеркнуть, что \(\log_{3}{8}\), как и любой логарифм - это просто число . Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: \(1,892789260714.....\)

Пример : Решите уравнение \(4^{5x-4}=10\)

Решение :

\(4^{5x-4}=10\)

\(4^{5x-4}\) и \(10\) никак к одному основанию не привести. Значит тут не обойтись без логарифма.

Воспользуемся определением логарифма:
\(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)

\(\log_{4}{10}=5x-4\)

Зеркально перевернем уравнение, чтобы икс был слева

\(5x-4=\log_{4}{10}\)

Перед нами . Перенесем \(4\) вправо.

И не пугайтесь логарифма, относитесь к нему как к обычному числу.

\(5x=\log_{4}{10}+4\)

Поделим уравнение на 5

\(x=\)\(\frac{\log_{4}{10}+4}{5}\)


Вот наш корень. Да, выглядит непривычно, но ответ не выбирают.

Ответ : \(\frac{\log_{4}{10}+4}{5}\)

Десятичный и натуральный логарифмы

Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы \((a>0, a\neq1)\). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:

Натуральный логарифм: логарифм, у которого основание - число Эйлера \(e\) (равное примерно \(2,7182818…\)), и записывается такой логарифм как \(\ln{a}\).

То есть, \(\ln{a}\) это то же самое, что и \(\log_{e}{a}\)

Десятичный логарифм: логарифм, у которого основание равно 10, записывается \(\lg{a}\).

То есть, \(\lg{a}\) это то же самое, что и \(\log_{10}{a}\) , где \(a\) - некоторое число.

Основное логарифмическое тождество

У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:

\(a^{\log_{a}{c}}=c\)

Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.

Вспомним краткую запись определения логарифма:

если \(a^{b}=c\), то \(\log_{a}{c}=b\)

То есть, \(b\) – это тоже самое, что \(\log_{a}{c}\). Тогда мы можем в формуле \(a^{b}=c\) написать \(\log_{a}{c}\) вместо \(b\). Получилось \(a^{\log_{a}{c}}=c\) – основное логарифмическое тождество.

Остальные свойства логарифмов вы можете найти . С их помощью можно упрощать и вычислять значения выражений с логарифмами, которые «в лоб» посчитать сложно.

Пример : Найдите значение выражения \(36^{\log_{6}{5}}\)

Решение :

Ответ : \(25\)

Как число записать в виде логарифма?

Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что \(\log_{2}{4}\) равен двум. Тогда можно вместо двойки писать \(\log_{2}{4}\).

Но \(\log_{3}{9}\) тоже равен \(2\), значит, также можно записать \(2=\log_{3}{9}\) . Аналогично и с \(\log_{5}{25}\), и с \(\log_{9}{81}\), и т.д. То есть, получается

\(2=\log_{2}{4}=\log_{3}{9}=\log_{4}{16}=\log_{5}{25}=\log_{6}{36}=\log_{7}{49}...\)

Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.

Точно также и с тройкой – ее можно записать как \(\log_{2}{8}\), или как \(\log_{3}{27}\), или как \(\log_{4}{64}\)… Здесь мы как аргумент пишем основание в кубе:

\(3=\log_{2}{8}=\log_{3}{27}=\log_{4}{64}=\log_{5}{125}=\log_{6}{216}=\log_{7}{343}...\)

И с четверкой:

\(4=\log_{2}{16}=\log_{3}{81}=\log_{4}{256}=\log_{5}{625}=\log_{6}{1296}=\log_{7}{2401}...\)

И с минус единицей:

\(-1=\) \(\log_{2}\)\(\frac{1}{2}\) \(=\) \(\log_{3}\)\(\frac{1}{3}\) \(=\) \(\log_{4}\)\(\frac{1}{4}\) \(=\) \(\log_{5}\)\(\frac{1}{5}\) \(=\) \(\log_{6}\)\(\frac{1}{6}\) \(=\) \(\log_{7}\)\(\frac{1}{7}\) \(...\)

И с одной третьей:

\(\frac{1}{3}\) \(=\log_{2}{\sqrt{2}}=\log_{3}{\sqrt{3}}=\log_{4}{\sqrt{4}}=\log_{5}{\sqrt{5}}=\log_{6}{\sqrt{6}}=\log_{7}{\sqrt{7}}...\)

Любое число \(a\) может быть представлено как логарифм с основанием \(b\): \(a=\log_{b}{b^{a}}\)

Пример : Найдите значение выражения \(\frac{\log_{2}{14}}{1+\log_{2}{7}}\)

Решение :

Ответ : \(1\)

log a r b r =log a b или log a b = log a r b r

Значение логарифма не изменится, если основание логарифма и число под знаком логарифма возвести в одну и ту же степень.

Под знаком логарифма могут находиться только положительные числа, причем, основание логарифма не равно единице.

Примеры.

1) Сравнить log 3 9 и log 9 81.

log 3 9=2, так как 3 2 =9;

log 9 81=2, так как 9 2 =81.

Значит, log 3 9=log 9 81.

Заметим, что основание второго логарифма равно квадрату основания первого логарифма: 9=3 2 , а число под знаком второго логарифма равно квадрату числа под знаком первого логарифма: 81=9 2 . Получается, что и число и основание первого логарифма log 3 9 были возведены во вторую степень, и значение логарифма от этого не изменилось:

Далее, так как извлечение корня n -й степени из числа а есть возведение числа а в степень ( 1 / n ), то из log 9 81 можно получить log 3 9 извлечением квадратного корня из числа и из основания логарифма:

2) Проверить равенство: log 4 25=log 0,5 0,2.

Рассмотрим первый логарифм. Извлечем квадратный корень из основания 4 и из числа 25 ; получаем: log 4 25=log 2 5.

Рассмотрим второй логарифм. Основание логарифма: 0,5= 1 / 2 . Число под знаком этого логарифма: 0,2= 1 / 5 . Возведем каждое из этих чисел в минус первую степень:

0,5 -1 =(1 / 2) -1 =2;

0,2 -1 =(1 / 5) -1 =5.

Таким образом, log 0,5 0,2=log 2 5. Вывод: данное равенство верно.

Решить уравнение:

log 4 x 4 +log 16 81=log 2 (5x+2). Приведем логарифмы слева к основанию 2 .

log 2 x 2 +log 2 3=log 2 (5x+2). Извлекли квадратный корень из числа и из основания первого логарифма. Извлекли корень четвертой степени из числа и основания второго логарифма.

log 2 (3x 2)=log 2 (5x+2). Преобразовали сумму логарифмов в логарифм произведения.

3x 2 =5x+2. Получили после потенцирования.

3x 2 -5x-2=0. Решаем квадратное уравнение по общей формуле для полного квадратного уравнения:

a=3, b=-5, c=-2.

D=b 2 -4ac=(-5) 2 -4∙3∙(-2)=25+24=49=7 2 >0; 2 действительных корня.

Проверка.

x=2.

log 4 2 4 +log 16 81=log 2 (5∙2+2);

log 2 2 2 +log 2 3=log 2 12;

log 2 (4∙3)=log 2 12;

log 2 12=log 2 12;


log a n b
=(1/ n )∙ log a b

Логарифм числаb по основанию a n равен произведению дроби 1/ n на логарифм числа b по основанию a .

Найти: 1) 21log 8 3+40log 25 2; 2) 30log 32 3∙log 125 2 , если известно, что log 2 3=b , log 5 2=c.

Решение.

Решить уравнения:

1) log 2 x+log 4 x+log 16 x=5,25.

Решение.

Приведем данные логарифмы к основанию 2. Применим формулу: log a n b =(1/ n )∙ log a b

log 2 x+(½) log 2 x+(¼) log 2 x=5,25;

log 2 x+0,5log 2 x+0,25log 2 x=5,25. Приводим подобные слагаемые:

(1+0,5+0,25)·log 2 x=5,25;

1,75·log 2 x=5,25 |:1,75

log 2 x=3. По определению логарифма:

2) 0,5log 4 (x-2)+log 16 (x-3)=0,25.

Решение. Логарифм по основанию 16 приведем к основанию 4.

0,5log 4 (x-2)+0,5log 4 (x-3)=0,25 |:0,5

log 4 (x-2)+log 4 (x-3)=0,5. Преобразуем сумму логарифмов в логарифм произведения.

log 4 ((x-2)(x-3))=0,5;

log 4 (x 2 -2x-3x+6)=0,5;

log 4 (x 2 -5x+6)=0,5. По определению логарифма:

x 2 -5x+4=0. По теореме Виета:

x 1 =1; x 2 =4. Первое значение х не подойдет, так как при х=1 логарифмы данного равенства не существуют, ведь под знаком логарифма могут находиться только положительные числа.

Проверим данное уравнение при х=4.

Проверка.

0,5log 4 (4-2)+log 16 (4-3)=0,25

0,5log 4 2+log 16 1=0,25

0,5∙0,5+0=0,25

log a b=log c b/log c a

Логарифм числа b по основанию а равен логарифму числа b по новому основанию с , деленному на логарифм старого основания а по новому основанию с .

Примеры:

1) log 2 3=lg3/lg2;

2) log 8 7=ln7/ln8.

Вычислить:

1) log 5 7 , если известно, что lg7 ≈0,8451; lg5 ≈0,6990.

c b / log c a .

log 5 7=lg7/lg5≈0,8451:0,6990≈1,2090.

Ответ: log 5 7 ≈1,209 0≈1,209 .

2) log 5 7 , если известно, что ln7 ≈1,9459; ln5 ≈1,6094.

Решение. Применяем формулу: log a b =log c b / log c a .

log 5 7=ln7/ln5≈1,9459:1,6094≈1,2091.

Ответ: log 5 7 ≈1,209 1≈1,209 .

Найдите х:

1) log 3 x=log 3 4+log 5 6/log 5 3+log 7 8/log 7 3.

Используем формулу: log c b / log c a =log a b. Получаем:

log 3 x=log 3 4+log 3 6+log 3 8;

log 3 x=log 3 (4∙6∙8);

log 3 x=log 3 192;

x=192 .

2) log 7 x=lg143-log 6 11/log 6 10-log 5 13/log 5 10 .

Используем формулу: log c b / log c a =log a b . Получаем:

log 7 x=lg143-lg11-lg13;

log 7 x=lg143- (lg11+lg13);

log 7 x=lg143-lg (11∙13);

log 7 x=lg143-lg143;

x=1.

Страница 1 из 1 1

Похожие статьи