Как создать электромагнитный импульс. Делаем генератор эми самостоятельно из подручных материалов

30.09.2019

Электромагнитный импульс (ЭМИ) -- поражающий фактор ядерного оружия, а также любых других источников ЭМИ (например молнии, специального электромагнитного оружия, короткого замыкания в электрооборудовании высокой мощности, или близкой вспышки сверхновой и т. д.). Поражающее действие электромагнитного импульса (ЭМИ) обусловлено возникновением наведённых напряжений и токов в различных проводниках. Действие ЭМИ проявляется, прежде всего, по отношению к электрической и радиоэлектронной аппаратуре. Наиболее уязвимы линии связи, сигнализации и управления. При этом может произойти пробой изоляции, повреждение трансформаторов, порча полупроводниковых приборов и т. п. Высотный взрыв способен создать помехи в этих линиях на очень больших площадях.

Природа электромагнитного импульса

Ядерный взрыв производит огромное количество ионизированных частиц, сильнейшие токи и электромагнитное поле, называемое электромагнитным импульсом (ЭМИ). На человека оно не оказывает никакого влияния (по крайней мере в пределах изученного), зато повреждает электронную аппаратуру. Большое количество ионов, оставшихся после взрыва, мешает коротковолновой связи и работе радаров. На образование ЭМИ очень значительное влияние оказывает высота взрыва. ЭМИ силен при взрыве на высотах ниже 4 км, и особенно силен при высоте более 30 км, однако менее значителен для диапазона 4-30 км. Это происходит из-за того, что ЭМИ образуется при несимметричном поглощении гамма-лучей в атмосфере. А на средних высотак как раз такое поглощение происходит симметрично и равномерно, не вызывая больших флуктуаций в распределении ионов. Зарождение ЭМИ начинается с чрезвычайно короткого, но мощного выброса гамма-лучей из зоны реакции. На протяжении ~10 наносекунд в виде гамма-лучей выделяется 0.3% энергии взрыва. Гамма-квант, сталкиваясь с атомом какого-либо газа воздуха выбивает из него электрон, ионизируя атом. В свою очередь этот электрон сам способен выбить своего собрата из другого атома. Возникает каскадная реакция, сопровождающаяся образованием до 30 000 электронов на каждый гамма-квант. На низких высотах, гамма-лучи, испущенные по направлению к земле, поглощаются ею, не производя большого количества ионов. Свободные электроны, будучи гораздо легче и проворнее атомов, быстро покидают область, в которой они зародились. Образуется очень сильное электромагнитное поле. Это создает очень сильный горизонтальный ток, искру, рождающую широкополосное электромагнитное излучение. В то же время, на земле, под местом взрыва, собираются электроны "заинтересовавшиеся" скоплением положительно заряженных ионов непосредственно вокруг эпицентра. Поэтому сильное поле создается и вдоль Земли.

И хотя в виде ЭМИ излучается очень незначительная часть энергии - 1/3x10-10, это происходит за очень короткий промежуток времени. Так что мощность, развиваемая им огромна: 100 000 МВт. На больших высотах происходит ионизация расположенных ниже плотных слоев атмосферы. На космических высотах (500 км) область такой ионизации достигает 2500 км. Максимальная ее толщина - до 80 км. Магнитное поле Земли закручивает траектории электронов в спираль, образуя мощный электромагнитный импульс на несколько микросекунд. В течении нескольких минут между поверхностью Земли и ионизированным слоем возникает сильное электростатическое поле (20-50 кВ/м), пока большая часть электронов не будет поглощена вследствие процессов рекомбинации. Хотя пиковая напряженность поля при высотном взрыве составляет всего 1-10% от наземного, на образование ЭМИ уходит в 100 000 больше энергии - 1/3x10-5 всей выделившейся, напряженность остается примерно постоянной под всем ионизированным районом.

Воздействие ЭМИ на технику. Сверхсильное электромагнитное поле индуцирует высокое напряжение во всех проводниках. ЛЭП будут фактически являться гигантскими антеннами, наведенное в них напряжение вызовет пробой изоляции и выход из строя трансформаторные подстанции. Выйдет из строя большинство специально не защищенных полупроводниковых приборов. В этом плане большую фору микросхемам даст старая добрая ламповая техника, которой нипочем ни сильная радиация, ни сильные электрические поля.

Инструкция

Возьмите ненужный карманный пленочный фотоаппарат со вспышкой. Вытащите из него батарейки. Наденьте резиновые перчатки и разберите аппарат.

Разрядите накопительный конденсатор вспышки. Для этого возьмите сопротивлением около 1 кОм и мощностью 0,5 Вт, согните его выводы, зажмите его в небольших плоскогубцах с изолированными ручками, после чего, удерживая резистор только при помощи плоскогубцев, замкните им конденсатор на несколько десятков секунд.После этого окончательно разрядите конденсатор, замкнув его лезвием отвертки с изолированной ручкой еще на несколько десятков секунд.

Измерьте напряжение - оно не должно превышать нескольких вольт. При необходимости, разрядите конденсатор повторно.Напаяйте на выводы конденсатора перемычку.

Теперь разрядите конденсатор в цепи синхроконтакта. Он имеет малую емкость, поэтому для его разряда достаточно кратковременно замкнуть синхроконтакт. Держите при этом руки подальше от лампы-вспышки, поскольку при срабатывании синхроконтакта на нее со специального повышающего поступает импульс высокого напряжения.

Катушку включите последовательно с накопительным конденсатором вспышки.Если у фотоаппарата нет кнопки проверки вспышки, подключите параллельно синхроконтакту кнопку с хорошей изоляцией, например, звонковую.

Сделайте в корпусе аппарата небольшие выемки для вывода проводов от кнопки и катушки. Они для того, чтобы при сборке корпуса эти провода не оказались пережатыми, что грозит их обрывом. Снимите перемычку с накопительного конденсатора вспышки. Соберите аппарат, после чего снимите резиновые перчатки.

Вставьте в аппарат батарейки. Включите его, отвернув вспышку от себя, дождитесь зарядки конденсатора, после чего вставьте в катушку лезвие отвертки. Удерживая отвертку за ручку, чтобы она не вылетела, нажмите кнопку. Одновременно со вспышкой возникнет электромагнитный импульс , который намагнитит отвертку.

Если отвертка намагнитилась недостаточно хорошо, можно повторить операцию еще несколько раз. По мере использования отвертки она будет терять намагниченность. Беспокоиться по этому поводу не стоит - ведь у вас есть прибор, которым ее можно всегда восстановить.Учтите, что намагниченные отвертки нравятся не всем домашним мастерам. Одни считают их очень удобными, другие - наоборот, очень неудобными.

Обратите внимание

Будьте осторожны при работе с любыми высоковольтными приборами.

Скептически настроенные люди при ответе на вопрос о действиях при ядреном взрыве скажут, что нужно обернуть себя простыней, выйти на улицу и строиться в шеренги. чтобы принять смерть, какая она есть. Но специалистами разработан ряд рекомендаций, которые помогут выжить при ядерном взрыве.

Инструкция

При получении информации о возможном ядерном взрыве в местности, где вы находитесь, необходимо по возможности спуститься в подземное укрытие (бомбоубежище) и не выходить, пока не получите других инструкций. Если такая возможность отсутствует, вы находитесь на улице и нет возможности попасть в помещение, укройтесь за любым предметом, который может представлять защиту, в крайнем случае, лягте плашмя на землю и закройте голову руками.

Если вы настолько близко находитесь от эпицентра взрыва, что видна сама вспышка, помните, что вам необходимо укрытся от радиоктивных осадков, которые появятся в таком случае в течение 20 минут, все зависит от отдаленности от эпицентра. Важно помнить, что радиактивные частицы разносятся ветром на сотни километров.

Не покидайте своего укрытия без официального заявления властей о том, что это безопасно. Постарайтесь сделать свое пребывание в убежище максимально комфортным, поддерживайте должные санитарные условия, воду и пищу используйте экономно, побольше еды и питья можно двавать детям, больным и престарелым людям. По возможности осуществляйте помощь управляющим бомбоубежища, ведь пребывание в ограниченном пространстве большого количества людей может оказаться малоприятным, а длительность такого вынужденного сожительства
может варьироваться от одного дня до месяца.

При возвращении в жилище важно помнить и выполнять несколько правил. Перед тем, как войти в дом, убедитесь в его целостности, наличии повреждений, отсутствии частичного обрушения конструкций. При входе в квартиру в первую очередь уберите все легковоспламеняющиеся жидкости, медикаменты и любые другие потенциально опасные вещества. Воду, газ и электричество можно включить лишь в том случае, когда у вас будет точное подтверждение того, что все системы функционируют в штатном режиме.

При передвижении по местности не подходите к поврежденным взрывом территориям и к зонам, помеченным знаками «опасные материалы» и «опасность радиации».

Обратите внимание

Неоценимую помощь вам окажет наличие при себе радио для прослушивания официальных сообщений местных властей. Всегда следуйте полученным, так как власти всегда располагают большей инфорацией, чем окружающие.

Электромагнитный малой мощности не способен вызвать гигантских разрушений, снося все на своем пути, как например, тот, который получается в результате ядерного взрыва. Сформировать маломощный импульс можно в домашних условиях.

Инструкция

Для начала раздобудьте ненужный вам в дальнейшем пленочный фотоаппарат, желательно, имеющий вспышку.

Электромагнитный импульс

Ударная волна

Ударная волна (УВ) - область резко сжатого воздуха, распространяющаяся во всœе стороны от центра взрыва со сверхзвуковой скоростью.

Раскаленные пары и газы, стремясь расшириться, производят резкий удар по окружающим слоям воздуха, сжимают их до больших давлений и плотности и нагревают до высокой температуры (несколько десятков тысяч градусов). Этот слой сжатого воздуха представляет ударную волну. Передняя граница сжатого слоя воздуха принято называть фронтом ударной волны. За фронтом УВ следует область разряжения, где давление ниже атмосферного. Вблизи центра взрыва скорость распространения УВ в несколько раз превышает скорость звука. С увеличением расстояния от места взрыва скорость распространения волны быстро падает. На больших расстояниях ее скорость приближается к скорости распространения звука в воздухе.

Ударная волна боеприпаса средней мощности проходит: первый километр за 1,4 с; второй - за 4 с; пятый - за 12 с.

Поражающее воздействие УВ на людей, технику, здания и сооружения характеризуется: скоростным напором; избыточным давлением во фронте движения УВ и временем ее воздействия на объект (фаза сжатия).

Воздействие УВ на людей должна быть непосредственным и косвенным. При непосредственном воздействии причиной травм является мгновенное повышение давления воздуха, что воспринимается как резкий удар, ведущий к переломам, повреждению внутренних органов, разрыву кровеносных сосудов. При косвенном воздействии люди поражаются летящими обломками зданий и сооружений, камнями, деревьями, битым стеклом и другими предметами. Косвенное воздействие достигает 80 % от всœех поражений.

При избыточном давлении 20-40 кПа (0,2-0,4 кгс/см 2) незащищенные люди могут получить легкие поражения (легкие ушибы и контузии). Воздействие УВ с избыточным давлением 40-60 кПа приводит к поражениям средней тяжести: потеря сознания, повреждение органов слуха, сильные вывихи конечностей, поражения внутренних органов. Крайне тяжелые поражения, нередко со смертельным исходом, наблюдаются при избыточном давлении свыше 100 кПа.

Степень поражения ударной волной различных объектов зависит от мощности и вида взрыва, механической прочности (устойчивости объекта), а также от расстояния, на котором произошел взрыв, рельефа местности и положения объектов на местности.

Для защиты от воздействия УВ следует использовать: траншеи, щели и окопы, снижающие се действие в 1,5-2 раза; блиндажи - в 2-3 раза; убежища - в 3-5 раз; подвалы домов (зданий); рельеф местности (лес, овраги, лощины и т. д.).

Электромагнитный импульс (ЭМИ) - это совокупность электрических и магнитных полей, возникающих в результате ионизации атомов среды под воздействием гамма-излучения. Продолжительность его действия составляет несколько миллисекунд.

Основными параметрами ЭМИ являются наводимые в проводах и кабельных линиях токи и напряжения, которые могут приводить к повреждению и выводу из строя радиоэлектронной аппаратуры, а иногда и к повреждению работающих с аппаратурой людей.

При наземном и воздушном взрывах поражающее действие электромагнитного импульса наблюдается на расстоянии нескольких километров от центра ядерного взрыва.

Наиболее эффективной защитой от электромагнитного импульса является экранирование линий энергоснабжения и управления, а также радио- и электроаппаратуры.

Обстановка, складывающаяся при применении ядерного оружия в очагах поражения.

Очаг ядерного поражения - это территория, в пределах которой в результате применения ядерного оружия произошли массовые поражения и гибель людей, сельскохозяйственных животных и растений, разрушения и повреждения зданий и сооружений, коммунально-энергетических и технологических сетей и линий, транспортных коммуникаций и других объектов.

Электромагнитный импульс - понятие и виды. Классификация и особенности категории "Электромагнитный импульс" 2017, 2018.


  • - ЭЛЕКТРОМАГНИТНЫЙ ИМПУЛЬС

    РАДИОАКТИВНОЕ ЗАРАЖЕНИЕ Радиоактивное заражение людей, боевой техники, местности и различных объектов при ядерном взрыве обусловливается осколками деления вещества заряда (Pu-239, U-235, U-238) и не прореагировавшей частью заряда, выпадающими из облака взрыва, а... .

  • Дата публикации 28.01.2013 14:06

    В глобальной сети сейчас можно найти огромное количество информации о том, что такое электромагнитный импульс. Многие его боятся, иногда не полностью понимая, о чем идет речь. Масла в огонь подливают научные телевизионные передачи и статьи в желтой прессе. Не пора ли разобраться в этом вопросе?

    Итак, электромагнитный импульс (ЭМИ ) – это возмущение электромагнитного поля, оказывающее влияние на любой материальный объект, находящийся в зоне его действия. Он воздействует не только на проводящие ток объекты, но и на диэлектрики, только немного в другой форме. Обычно понятие «электромагнитный импульс» соседствует с термином «ядерное оружие». Почему? Ответ прост: именно при ядерном взрыве ЭМИ достигает своего наибольшего значения из всех возможных. Вероятно, в некоторых экспериментальных установках также удается создать мощные возмущения поля, но они носят локальный характер, а вот при ядерном взрыве затрагиваются большие площади.

    Своим появлением электромагнитный импульс обязан нескольким законам, с которыми в повседневной работе сталкивается каждый электрик. Как известно, направленное движение элементарных частиц, обладающее электрическим зарядом, неразрывно связано с магнитным полем. Если есть проводник, по которому протекает ток, то вокруг него всегда регистрируется поле. Верно и обратное: воздействие электромагнитного поля на проводящий материал генерирует в нем ЭДС и, как следствие, ток. Обычно уточняют, что проводник формирует цепь, хотя это верно только отчасти, так как вихревые токи создают собственные контуры в объеме проводящего вещества. Ядерный взрыв создает движение электронов, следовательно, возникает поле. Далее все просто: линии напряженности, в свою очередь, создают наведенные токи в окружающих проводниках.

    Механизм данного явления следующий: благодаря мгновенному высвобождению энергии возникают потоки элементарных частиц (гамма, альфа, рентгеновское излучение и пр.). Во время их прохождения сквозь воздух из молекул «выбиваются» электроны, которые ориентируются вдоль магнитных линий Земли. Возникает направленное движение (ток), генерирующее электромагнитное поле. А так как эти процессы протекают молниеносно, можно говорить об импульсе. Далее во всех проводниках, находящихся в зоне действия поля (сотни километров) индуцируется ток, а так как напряженность поля огромна, значение тока также велико. Это вызывает срабатывание систем защит, перегорание предохранителей – вплоть до возгорания и неустранимых повреждений. Действию ЭМИ подвержено все: от интегральных схем до ЛЭП, правда, в различной степени.

    Защита от ЭМИ заключается в предотвращении индуцирующего действия поля. Этого можно добиться несколькими способами:

    – удалиться от эпицентра, так как поле слабеет с увеличением расстояния;

    – экранировать (с заземлением) электронное оборудование;

    – «разобрать» схемы, предусмотрев зазоры с учетом большого тока.

    Часто можно встретить вопрос о том, как создать электромагнитный импульс своими руками. На самом деле каждый человек сталкивается с ним ежедневно, щелкая выключателем лампочки. В момент коммутации ток кратковременно превышает номинальный в десятки раз, вокруг проводов генерируется электромагнитное поле, которое наводит в окружающих проводниках электродвижущую силу. Просто сила этого явления недостаточна, чтобы вызвать повреждение, сопоставимое с ЭМИ ядерного взрыва. Более выраженное его проявление можно получить, замеряя уровень поля вблизи дуги электросварки. В любом случае задача проста: необходимо организовать возможность мгновенного возникновения электрического тока большого действующего значения.

    что такое ЭЛЕКТРОМАГНИТНЫЙ ИМПУЛЬС?

    1. Ну чего так вс усложнять то?
      Электро-магнитным он называется потому, что электрическая составляющая неразрывно связана с магнитной. Это как радио-волна. Только в последнем случае - это последовательность электромагнитных импульсов в виде гармонических колебаний.
      А тут - всего один импульс.
      Чтобы его получить, надо в точке пространства создать заряд, положительный или отрицательный. Поскольку мир полей дуален, то нужно создавать 2 разноимнных заряда в разных местах.
      Вряд ли возможно сделать такое в течение времени равном нулю.
      Однако можно например подсоединить конденсатор к антенне. Но в данном случае сработает резонансная природа антенны. И опять таки мы получим не единственный импульс а колебания.
      В бомбе скорее всего тоже не единичный электромагнитный импульс а импульс электромагнитного колебания.
    2. Электромагнитный импульс ядерного взрыва представляет собой мощное кратковременное электромагнитное поле с длинами волн от 1 до 1000м и более, возникающее в момент взрыва, которое наводит сильные электрические напряжения и токи в проводниках различной протяженности в воздухе, земле, на технике и других объектах (металлические опоры, антенны, провода линий связи и электропередач, трубопроводы и т. п.) .
      При наземном и низком воздушном взрывах поражающее воздействие электромагнитного импульса наблюдается на расстоянии нескольких километров от центра взрыва. При высотном ядерном взрыве могут возникнуть электромагнитные поля в зоне взрыва и на высотах 20 - 40км от поверхности земли.
      Электромагнитный импульс характеризуются напряженностью поля. Напряженность электрического и магнитного полей зависит от мощности, высоты взрыва, расстояния от центра взрыва и свойств окружающей среды.
      Поражающее действие электромагнитного импульса проявляется, прежде всего, по отношению к радиоэлектронной и электротехнической аппаратуре, находящейся на вооружении, военной технике и других объектах.
      Под действием электромагнитного импульса в указанной аппаратуре наводятся электрические токи и напряжения, которые могут вызвать пробой изоляции, повреждение трансформаторов, порчу полупроводниковых приборов, перегорание плавких вставок и других элементов радиотехнических устройств.
      Защита от электромагнитного импульса достигается экранированием линий электроснабжения, а также аппаратуры. Все наружные линии должны быть двухпроводными, хорошо изолированными от земли, с плавкими вставками.
      Начало эпохи информационных войн, ознаменовалось появлением новых видов оружия электромагнитного импульса (ЭМИ) и радиочастотного. По принципу поражающего действия оружие ЭМИ имеет много общего с электромагнитным импульсом ядерного взрыва и отличается от него, среди прочего, более короткой длительностью. Разработанные и испытанные в ряде стран неядерные средства генерации мощного ЭМИ способны создавать кратковременные (в несколько наносекунд) потоки электромагнитного излучения, плотность которых достигает предельных значений относительно электрической прочности атмосферы. При этом чем короче ЭМИ, тем выше порог допустимой мощности генератора.
      По мнению аналитиков, наряду с традиционными средствами радиоэлектронной борьбы использование ЭМИ- и радиочастотного оружия для нанесения электронных и комбинированных электронно-огневых ударов с целью вывода из строя радиоэлектронных средств (РЭС) на расстояниях от сотен метров до десятков километров может стать одной из основных форм боевых действий в ближайшем будущем. Кроме временного нарушения функционирования РЭС, допускающего последующее восстановление их работоспособности, ЭМИ-оружие может осуществлять физическое разрушение (функциональное поражение) полупроводниковых элементов РЭС, в том числе находящихся в выключенном состоянии.
      ОтметиМ поражающее действие мощного излучения ЭМИ-оружия на электротехнические и электроэнергетические системы вооружения и военной техники (ВВТ) , электронные системы зажигания двигателей внутреннего сгорания. Токи, возбуждаемые электромагнитным полем в цепях электро- или радиовзрывателей, установленных на боеприпасах, могут достигать уровней, достаточных для их срабатывания. Потоки высокой энергии в состоянии инициировать детонацию взрывчатых веществ (ВВ) боеголовок ракет, бомб и артиллерийских снарядов, а также неконтактный подрыв мин в радиусе 5060 м от точки подрыва ЭМИ-боеприпаса средних калибров (100120 мм) .
      В отношении поражающего действия ЭМИ-оружия на личный состав- эффект временного нарушения адекватной сенсомоторики человека, возникновения ошибочных действий в его поведении и даже потери трудоспособности. Негативные проявления воздействия мощных сверхкоротких СВЧ-импульсов не обязательно связаны с тепловым разрушением живых клеток биологических объектов. Поражающим фактором зачастую является высокая напряженность наведенного на мембранах клеток электрического поля.
    3. Это всплеск электрического и магнитного поля. Т. к. свет - тоже электромагнитная волна, то и вспышка света - тоже электромагнитный импульс.
    4. Всплеск электромагнтных волн - намного превышающий естественный электромагнитный фон Земли
    5. удар током
    6. Один из поражающих факторов ядерного взрыва....
    7. Электромагнитный импульс (ЭМИ) поражающий фактор ядерного оружия, а также любых других источников ЭМИ (например молнии, специального электромагнитного оружия или близкой вспышки сверхновой и т. д.) . Поражающее действие электромагнитного импульса (ЭМИ) обусловлено возникновением наведнных напряжений и токов в различных проводниках. Действие ЭМИ проявляется, прежде всего, по отношению к электрической и радиоэлектронной аппаратуре. Наиболее уязвимы линии связи, сигнализации и управления. При этом может произойти пробой изоляции, повреждение трансформаторов, порча полупроводниковых приборов, порча компьютеров/ноутбуков и сотовых телефонов и т. п. Высотный взрыв способен создать помехи в этих линиях на очень больших площадях. Защита от ЭМИ достигается экранированием линий энергоснабжения и аппаратуры
    Похожие статьи