Как найти среднюю силу сопротивления воздуха. Величина силы сопротивления воздуха

30.09.2019

Одним из проявлений силы взаимного тяготения является сила тяжести, т.е. сила притяжения тел к Земле. Если на тело действует только сила тяжести, то оно совершает свободное падение. Следовательно, свободное падение – это падение тел в безвоздушном пространстве под действием притяжения к Земле, начинающееся из состояния покоя.

Впервые это явление изучил Галилей, но из-за отсутствия воздушных насосов он не мог провести опыт в безвоздушном пространстве, поэтому Галилей производил опыты в воздухе. Отбрасывая все второстепенные явления, встречающиеся при движении тел в воздухе, Галилей открыл законы свободного падения тел. (1590г.)

  • 1-й закон. Свободное падение является прямолинейным равномерноускоренным движением.
  • 2-й закон. Ускорение свободного падения в данном месте Земли для всех тел одинаково; среднее его значение равно 9,8 м/с.

Зависимости между кинематическими характеристиками свободного падения получаются из формул для равноускоренного движения, если в этих формулах положить а = g. При v0 = 0 V = gt, H = gt2 \2, v = √2gH .

Практически воздух всегда оказывает сопротивление движению падающего тела, причем для данного тела сопротивление воздуха тем больше, чем больше скорость падения. Следовательно, по мере увеличения скорости падения сопротивление воздуха увеличивается, ускорение тела уменьшается и, когда сопротивление воздуха сделается равным силе тяжести, ускорение свободно падающего тела станет равным нулю. В дальнейшем движение тела будет равномерным движением.

Реальное движение тел в земной атмосфере происходит по баллистической траектории, существенно отличающейся от параболической из-за сопротивления воздуха. Например, если выпустить из винтовки пулю со скоростью 830 м/с под углом α = 45о к горизонту и зафиксировать с помощью кинокамеры фактическую траекторию трассирующей пули и место ее падения, то дальность полета окажется равной примерно 3,5 км. А если рассчитать по формуле, то оно окажется 68, 9 км. Разница огромная!

Сопротивление воздуха зависит от четырех факторов: 1) РАЗМЕР движущегося предмета. Большой объект, очевидно, получит большее сопротивление, чем маленький. 2) ФОРМА движущегося тела. Плоская пластина определенной площади будет оказывать гораздо большее сопротивление ветру, чем обтекаемое тело (форма капли), имеющее ту же площадь сечения для такого же ветра, реально в 25 раз большее! Круглый предмет находится где-то посередине. (Это и есть причина, по которой корпуса всех автомобилей, самолетов и парапланов имеют по возможности скругленную или каплевидную форму: она уменьшает сопротивление воздуха и позволяет двигаться быстрее при меньших усилиях на двигатель, а значит, при меньших затратах топлива). 3) ПЛОТНОСТЬ ВОЗДУХА. Нам уже известно, что один кубический метр весит около 1,3 кг на уровне моря, и, чем выше вы поднимаетесь, тем менее плотным становится воздух. Эта разница может играть некоторую практическую роль при взлете только очень с большой высоты. 4) СКОРОСТЬ. Каждый из трех рассмотренных до сих пор факторов дает пропорциональный вклад в воздушное сопротивление: если вы увеличиваете один из них вдвое, сопротивление также удваивается; если вы уменьшаете любой из них в два раза, сопротивление падает наполовину.

СОПРОТИВЛЕНИЕ ВОЗДУХА равно ПОЛОВИНЕ ПЛОТНОСТИ ВОЗДУХА, умноженной на КОЭФФИЦИЕНТ СОПРОТИВЛЕНИЯ, умноженной на ПЛОЩАДЬ СЕЧЕНИЯ и умноженной на КВАДРАТ СКОРОСТИ.

Введем следующие символы: D - сопротивление воздуха; р - плотность воздуха; А - площадь сечения; cd - коэффициент сопротивления; υ - скорость воздуха.

Теперь имеем: D = 1/2 х р х cd x A x υ 2

При падении тела в реальных условиях ускорение тела не будет равно ускорению свободного падения. В этом случае 2 закон Ньютона примет вид ma = mg – Fсопр –Fарх

Fарх. =ρqV , так как плотность воздуха мала, можно пренебречь, тогда ma = mg – ηυ

Проанализируем это выражение. Известно, что на тело, движущееся в воздухе, действует сила сопротивления. Почти очевидно, что эта сила зависит от скорости движения и размеров тела, например площади поперечного сечения S, причем эта зависимость типа «чем больше υ и S, тем больше F». Можно еще уточнить вид этой зависимости, исходя из соображений размерностей (единиц измерения). Действительно, сила измеряется в ньютонах ([F] = Н), а Н = кг·м/с2. Видно, что секунда в квадрате входит в знаменатель. Отсюда сразу ясно, что сила должна быть пропорциональна квадрату скорости тела ([υ2] = м2/с2) и плотности ([ρ] = кг/м3) - конечно, той среды, в которой движется тело. Итак,

А чтобы подчеркнуть, что эта сила направлена против вектора скорости.

Мы узнали уже очень много, но это еще не все. Наверняка сила сопротивления (аэродинамическая сила) зависит и от формы тела - не случайно ведь летательные аппараты делаются «хорошо обтекаемыми». Чтобы учесть и эту предполагаемую зависимость, можно в полученное выше соотношение (пропорциональность) ввести безразмерный множитель, который не нарушит равенства размерностей в обеих частях этого соотношения, но превратит его в равенство:

Представим себе шарик, движущийся в воздухе, например, дробинку, горизонтально вылетевшую с начальной скоростью - Если бы не было сопротивления воздуха, то на расстоянии х за время дробинка сместилась бы по вертикали вниз на. Но из-за действия силы сопротивления (направленной против вектора скорости) время полета дробинки до вертикальной плоскости х будет больше t0. Следовательно, сила тяжести дольше будет действовать на дробинку, так что она опустится ниже y0.

И вообще, дробинка будет двигаться по другой кривой, уже не являющейся параболой (ее называют баллистической траекторией).

При наличии атмосферы падающие тела помимо силы тяжести испытывают воздействие сил вязкого трения о воздух. В грубом приближении при малых скоростях силу вязкого трения можно считать пропорциональной скорости движения. В этом случае уравнение движения тела (второй закон Ньютона) имеет вид ma = mg – η υ

Сила вязкого трения, действующая на движущиеся с небольшими скоростями тела сферической формы примерно пропорциональна площади их поперечного сечения, т.е. квадрату радиуса тел: F = -η υ= - const R2 υ

Масса же сферического тела постоянной плотности пропорциональна его объему, т.е. кубу радиуса m = ρ V = ρ 4/3π R3

Уравнение написано с учетом направления оси OY вниз, где η –коэффициент сопротивления воздуха. Эта величина зависит от состояния среды и параметров тела (массы тела, размеров и формы). Для тела шаровидной формы, по формуле Стокса η =6(m(r где m – масса тела, r – радиус тела, (- коэффициент вязкости воздуха.

Рассмотрим для примера падение шариков из разного материала. Возьмем два шарика одинакового диаметра, пластмассовый и железный. Примем для наглядности, что плотность железа в 10 раз больше плотности пластмассы, поэтому железный шар будет иметь массу в 10 раз больше, соответственно его инертность будет в 10 раз выше, т.е. под воздействием той же силы он будет ускоряться в 10 раз медленнее.

В вакууме на шарики действует только сила тяжести, на железный в 10 раз больше чем на пластмассовый, соответственно разгоняться они будут с одним и тем же ускорением (в 10 раз большая сила тяжести компенсирует в 10 раз большую инертность железного шарика). При одинаковом ускорении одно и то же расстояние оба шарика пройдут за одно и то же время, т.е. другими словами упадут одновременно.

В воздухе: к действию силы тяжести добавляются сила аэродинамического сопротивления и Архимедова сила. Обе эти силы направлены вверх, против действия силы тяжести, и обе зависят только от размера и скорости движения шариков (не зависят от их массы) и при равных скоростях движения равны для обоих шариков.

T.о. результирующая трех сил действующих на железный шарик будет уже не в 10 раз превышать аналогичную результирующую деревянного, а в больше чем 10, инертность же железного шарика остается больше инертности деревянного все в те же 10 раз.. Соответственно ускорение железного шарика будет больше, чем пластмассового, и упадет он раньше.

1. Движение АТС связано с перемещением частиц воздуха, на которое расходуется часть мощности двигателя. эти затраты складываются из следующих составляющих:

2. Лобового сопротивления, появляющееся из-за разности давлений спереди и сзади движущегося автомобиля (55-60% сопротивления воздуха).

3. Сопротивление, создаваемое выступающими частями – зеркало заднего вида и т.д. (12-18%).

4. Сопротивление, возникающее при прохождении воздуха через радиатор и подкапотное пространство.

5. Сопротивление из-за трения близлежащих поверхностей о слои воздуха (до 10%).

6. Сопротивление, вызваное разностью давлений сверху и снизу автомобиля (5-8%).

Для упрощения расчетов сопротивления воздуха, распределенное по всей поверхности автомобиля сопротивление заменяем силой сопротивления воздуха приложеной в одной точке, называемой центром парусности автомобиля.

Опытом устанавлено, что сила сопротивления воздуха зависит от следующих факторов:

От скорости движения автомобиля, причем данная зависимость носит квадратических характер;

От лобовой площади автомобиля F ;

От коэффициента обтекаемости К в , который числено равен силе сопротивления воздуха, созхдаваемой одним квадратным метром лобовой площади АТС при движении его со скоростью 1 м/с.

Тогда сила сопротивления воздушной среды .

При определении F используют эмпирические формулы, определяющие приблизительную площадь сопротивления. Для грузовых автомобилей F обычно: F=H×B (произведение высоты и ширины), аналогично для автобусов. Для легковых автомобилей принимают F=0,8H×B . Существуют иные формулы, где учитывают колею автомобиля, вероятность изменения высоты АТС и др. Произведение К в ×F называют фактором обтекаемости и обозначают W .

Для определения коэффициента обтекаемости используют специальные устройства либо метод выбега, заключающийся в определении изменения пути свободнокатящегося авотмобиля при движении с различной начальной скоростью. При движении автомобиля в воздушном потоке силу сопротивления воздуха Р в возможно разложить на составляющие по осям АТС. При этом формулы для определения проекций сил отличаются лишь коэфициентами, учитывающими распределение силы по осям. Коэффициент обтекаемости возможно определить из выражения:

где С Х – коэффициент, определяемый опытным путем и учитывающий распределение силы сопротивления воздуха по оси "х". Этот коэффициент получают путем продувки в аэродинамической трубе, ;

r - плотность воздуха, согласно ГОСТ r=1,225 кг/м 3 на нулевой отметке.

Получаем .

Произведение представляет собой скоростной напор, равный кинетической энергии кубического метра воздуха, движущегося со скоростью движения автомобиля относительно воздушной среды.

Коэффициент К в имеет размерность .

Между К в и С Х существует зависимость: К в =0,61С Х .

Прицеп на АТС увеличивает силу сопротивления в среднем на 25%.

Формирование силы сопротивления воздуха. На рис. 78 и 81 показаны потоки воздуха, образуемые при движении легкового и грузового автомобилей. Сила сопротивления воздуха P w состоит из нескольких составляющих, основной из которых является сила лобового сопротивления. Последняя возникает вследствие того, что при движении автомобиля (см. рис. 78) впереди него создается избыточное давление +АР воздуха, а сзади - пониженное -АР (в сравнении с атмосферным давлением). Подпор воздуха впереди автомобиля создает сопротивление движению вперед, а разрежение воздуха сзади автомобиля образует силу, которая стремится переместить автомобиль назад. Поэтому чем больше разница давлений впереди и сзади автомобиля, тем больше сила лобового сопротивления, а разница давлений, в свою очередь, зависит от размеров, формы автомобиля и скорости его движения.

Рис. 78.

Рис. 79.

На рис. 79 приведены значения (в условных единицах) лобового сопротивления в зависимости от формы тела. Из рисунка видно, что при обтекаемой передней части лобовое сопротивление воздуха снижается на 60%, а при придании обтекаемости задней части - только на 15%. Это свидетельствует о том, что создаваемый впереди автомобиля подпор воздуха оказывает большее влияние на формирование силы лобового сопротивления воздуха, чем разряжение сзади автомобиля. Об обтекаемости задней части автомобиля можно судить по заднему стеклу - при хорошей аэродинамической форме оно не бы-

вает грязным, а при плохой обтекаемости заднее стекло присасывает к себе пыль.

В общем балансе сил сопротивления воздуха на силу лобового сопротивления приходится приблизительно 60%. Среди других составляющих следует выделить: сопротивление, возникающее от прохождения воздуха через радиатор и подкапотное пространство; сопротивление, создаваемое выступающими поверхностями; сопротивление трения воздуха о поверхность и другие дополнительные сопротивления. Значения всех этих составляющих одного порядка.

Суммарная сила сопротивления воздуха P w сосредоточена в центре парусности, представляющем собой центр наибольшей площади сечения тела в плоскости, перпендикулярной к направлению движения. В общем случае центр парусности не совпадает с центром масс автомобиля.

Сила лобового сопротивления воздуха - это произведение площади поперечного сечения тела на скоростной напор воздуха с учетом обтекаемости формы:

где с х - безразмерный коэффициент лобового (аэродинамического ) сопротивления, учитывающий обтекаемость; /’-лобовая площадь или площадь фронтальной проекции, м 2 ; q = 0,5p B v a 2 - скоростной напор воздуха, Н/м 2 . Как видно из размерности, скоростной напор воздуха представляет собой удельную силу, действующую на единицу площади.

Подставив выражение скоростного напора в формулу (114), получим

где v a - скорость автомобиля; р в - плотность воздуха, кг/м 3 .

Лобовая площадь

где а - коэффициент заполнения площади; а = 0,78...0,80 для легковых автомобилей и а = 0,75...0,90 - для грузовых; H a , В а - наибольшие значения соответственно ширины и высоты автомобиля.

Силу лобового сопротивления воздуха рассчитывают также по формуле

где k w = 0,5с х р в - коэффициент сопротивления воздуха, имеющий размерность плотности воздуха - кг/м 3 или Н с 2 /м 4 . На уровне моря, где плотность воздуха р в = 1,225 кг/м 3 , k w = 0,61 с х, кг/м 3 .

Физический смысл коэффициентов k w и с х состоит в том, что они характеризуют свойства обтекаемости автомобиля.

Аэродинамические испытания автомобиля. Аэродинамические характеристики автомобиля исследуют в аэродинамической трубе, одна из которых построена в Российском научно-исследовательском центре по испытаниям и доводке автомототехники. Рассмотрим разработанную в этом центре методику испытаний автомобиля в аэродинамической трубе.

На рис. 80 изображена система осей координат и направления действия составляющих полной аэродинамической силы. При испытаниях определяют следующие силы и моменты: силу лобового аэродинамического сопротивления Р х, боковую силу Р, подъемную силу P v момент крена М х, опрокидывающий момент М у, поворачивающий момент M v

Рис. 80.

В процессе испытаний автомобиль устанавливают на шестикомпонентных аэродинамических весах и закрепляют на платформе (см. рис. 80). Автомобиль должен быть заправлен, укомплектован и загружен в соответствии с технической документацией. Давление воздуха в шинах должно соответствовать заводской инструкции по эксплуатации. Испытаниями управляет ЭВМ в соответствии с программой автоматизированного проведения типовых весовых испытаний. В процессе испытаний специальным вентилятором создаются потоки воздуха, движущиеся со скоростью от 10 до 50 м/с с интервалом 5 м/с. Могут создаваться различные углы натекания воздуха на автомобиль относительно продольной оси. Значения сил и моментов, показанных на рис. 80 и 81, регистрирует и обрабатывает ЭВМ.

При испытаниях измеряют также скоростной (динамический) напор воздуха q. По результатам измерений ЭВМ рассчитывает коэффициенты перечисленных выше сил и моментов, из которых приведем формулу для расчета коэффициента лобового сопротивления:

где q - динамический напор; F - лобовая площадь.

Остальные коэффициенты (с у, c v с тх, с ту, c mz) рассчитываются аналогично с подстановкой в числитель соответствующей величины.

Произведение ^называют фактором аэродинамического сопротивления или фактором обтекаемости.

Значения коэффициента сопротивления воздуха k w и с х для автомобилей разных типов приведены ниже.

Способы снижения силы сопротивления воздуха. Чтобы снизить лобовое сопротивление, улучшают аэродинамические свойства автомобиля или автопоезда: в легковых автомобилях изменяют форму кузова (в основном), а в грузовых - используют обтекатели, тент, лобовое стекло с наклоном.

Антенна, зеркало внешнего вида, багажник над крышей, дополнительные фары и другие выступающие детали или открытые окна увеличивают сопротивление воздуха.

Сила сопротивления воздуха автопоезда зависит не только от формы отдельных звеньев, но и от взаимодействия воздушных потоков, обтекающих звенья (рис. 81). В промежутках между ними образуются дополнительные завихрения, увеличивающие суммарное сопротивление воздуха передвижению автопоезда. У магистральных автопоездов, перемещающихся по автотрассам с высокой скоростью, расход энергии на преодоление сопротивления воздуха может достигать 50% мощности автомобильного двигателя. Чтобы снизить ее, на автопоездах устанавливают дефлекторы, стабилизаторы, обтекатели и другие приспособления (рис. 82). По данным проф. А.Н. Евграфова, применение комплекта навесных аэродинамических элементов снижает коэффициент с х седельного автопоезда на 41%, прицепного - на 45%.

Рис. 81.

Рис. 82.

При скорости до 40 км/ч сила P w меньше силы сопротивления качению на асфальтированной дороге, вследствие чего ее не учитывают. Свыше 100 км/ч сила сопротивления воздуха представляет собой основную составляющую потерь тягового баланса.

Является составляющей полной аэродинамической силы.

Сила лобового сопротивления обычно представляется в виде суммы двух составляющих: сопротивления при нулевой подъёмной силе и индуктивного сопротивления. Каждая составляющая характеризуется своим собственным безразмерным коэффициентом сопротивления и определённой зависимостью от скорости движения.

Лобовое сопротивление может способствовать как обледенению летательных аппаратов (при низких температурах воздуха), так и вызывать нагревание лобовых поверхностей ЛА при сверхзвуковых скоростях ударной ионизацией .

Сопротивление при нулевой подъёмной силе

Эта составляющая сопротивления не зависит от величины создаваемой подъёмной силы и складывается из профильного сопротивления крыла, сопротивления элементов конструкции самолёта, не вносящих вклад в подъёмную силу, и волнового сопротивления. Последнее является существенным при движении с около- и сверхзвуковой скоростью, и вызвано образованием ударной волны, уносящей значительную долю энергии движения. Волновое сопротивление возникает при достижении самолётом скорости, соответствующей критическому числу Маха , когда часть потока, обтекающего крыло самолёта, приобретает сверхзвуковую скорость. Критическое число М тем больше, чем больше угол стреловидности крыла, чем более заострена передняя кромка крыла и чем оно тоньше.

Сила сопротивления направлена против скорости движения, её величина пропорциональна характерной площади S, плотности среды ρ и квадрату скорости V:

C x 0 - безразмерный аэродинамический коэффициент сопротивления, получается из критериев подобия, например, чисел Рейнольдса и Фруда в аэродинамике.

Определение характерной площади зависит от формы тела:

  • в простейшем случае (шар) - площадь поперечного сечения;
  • для крыльев и оперения - площадь крыла/оперения в плане;
  • для пропеллеров и несущих винтов вертолётов - либо площадь лопастей, либо ометаемая площадь винта;
  • для продолговатых тел вращения ориентированных вдоль потока (фюзеляж, оболочка дирижабля) - приведённая волюметрическая площадь, равная V 2/3 , где V - объём тела.

Мощность, требуемая для преодоления данной составляющей силы лобового сопротивления, пропорциональна кубу скорости.

Индуктивное сопротивление

Индуктивное сопротивление (англ. lift-induced drag ) - это следствие образования подъёмной силы на крыле конечного размаха. Несимметричное обтекание крыла приводит к тому, что поток воздуха сбегает с крыла под углом к набегающему на крыло потоку (т. н. скос потока). Таким образом, во время движения крыла происходит постоянное ускорение массы набегающего воздуха в направлении, перпендикулярном направлению полёта, и направленном вниз. Это ускорение во-первых сопровождается образованием подъёмной силы, а во-вторых - приводит к необходимости сообщать ускоряющемуся потоку кинетическую энергию. Количество кинетической энергии, необходимое для сообщения потоку скорости, перпендикулярной направлению полёта, и будет определять величину индуктивного сопротивления.

На величину индуктивного сопротивления оказывает влияние не только величина подъёмной силы, но и её распределение по размаху крыла. Минимальное значение индуктивного сопротивления достигается при эллиптическом распределении подъёмной силы по размаху. При проектировании крыла этого добиваются следующими методами:

  • выбором рациональной формы крыла в плане;
  • применением геометрической и аэродинамической крутки;
  • установкой вспомогательных поверхностей - вертикальных законцовок крыла.

Индуктивное сопротивление пропорционально квадрату подъёмной силы Y, и обратно пропорционально площади крыла S, его удлинению λ , плотности среды ρ и квадрату скорости V:

Таким образом, индуктивное сопротивление вносит существенный вклад при полёте на малой скорости (и, как следствие, на больших углах атаки). Оно также увеличивается при увеличении веса самолёта.

Суммарное сопротивление

Является суммой всех видов сил сопротивления:

X = X 0 + X i

Так как сопротивление при нулевой подъёмной силе X 0 пропорционально квадрату скорости, а индуктивное X i - обратно пропорционально квадрату скорости, то они вносят разный вклад при разных скоростях. С ростом скорости, X 0 растёт, а X i - падает, и график зависимости суммарного сопротивления X от скорости («кривая потребной тяги») имеет минимум в точке пересечения кривых X 0 и X i , при которой обе силы сопротивления равны по величине. При этой скорости самолёт обладает наименьшим сопротивлением при заданной подъёмной силе (равной весу), а значит наивысшим аэродинамическим качеством .


Wikimedia Foundation . 2010 .

вследствие торможения перед телом скорость потока уменьшается, а давление увеличивается. Степень его увеличения зависит от формы передней части тела. Пе­ред плоской пластинкой давление больше, чем перед каплевидным телом. За телом, вследствие разрежения, давление уменьшается, при этом у плоской пластинки па большую величину по сравнению с каплевидным телом.

Таким образом, перед телом и за ним образуется разность давлений, в результате чего создается аэроди­намическая сила, называемая сопротивлением давления. Кроме этого, из-за трения воздуха в пограничном слое возникает аэродинамическая сила, которая называется сопротивлением трения.

При симметричном обтекании тела сопротивление

давления и сопротивление трения направлены в сторо­ну, противоположную движению тела, и вместе состав­ляют силу лобового сопротивления. Опытами установлено, что аэродинамическая сила зависит от скорости потока, массовой плотности возду­ха, формы и размеров тела, положения его в потоке и состояния поверхности. При повышении скорости набегающего потока его кинетическая энергия, которая пропорциональна квад-рату скорости, увеличивается. Поэтому при обтекании плоской пластины, направленной перпендикулярно по-току, с увеличением скорости давление в передней час-


ти ее возрастает, так как большая часть кинетической энергии потока при торможении переходит в потенци­альную энергию давления. При этом за пластинкой дав­ление еще больше уменьшается, так как из-за увеличе­ния инертности струи увеличивается протяженность области пониженного давления. Таким образом, при по­вышении скорости потока из-за увеличения разности дав­ления перед телом и за ним пропорционально квадрату скорости возрастает аэродинамическая сила сопротив­ления.

Ранее было установлено, что плотность воздуха ха­рактеризует инертность его: чем больше плотность, тем больше инертность. Для движения тела в более инерт­ном, а следовательно, в более плотном воздухе требует­ся приложить больше усилий для сдвига частиц возду­ха, а это значит, что и воздух будет с большей силой воздействовать на тело. Следовательно, чем выше плот­ность воздуха, тем больше аэродинамическая сила, дей­ствующая на движущееся тело.

В соответствии с законами механики величина аэро-динамической силы пропорциональна площади сечения тела, перпендикулярного к направлению действия дан­ной силы. Для большинства тел таким сечением явля­ется наибольшее поперечное сечение, называемое миде­лем, а для крыла - площадь его в плане.

Форма тела влияет на характер аэродинамического спектра (скорость струек, обтекающих данное тело), а следовательно, и на разность давлений, что определяет величину аэродинамической силы. При изменении поло­жения тела в воздушном потоке изменяется его спектр обтекания, что влечет за собой изменение величины и направления аэродинамических сил.

Тела, имеющие менее шероховатую поверхность, ис­пытывают меньшие силы трения, так как на большей части поверхности их пограничный слой имеет ламинар­ное течение, в котором сопротивление трения меньше, чем в турбулентном.

Таким образом, если влияние формы и положения
тела в потоке, степень обработки его поверхности учесть
поправочным коэффициентом, который называется аэро­
динамическим коэффициентом, то можно сделать вывод,
что аэродинамическая сила прямо пропорциональна сво-
ему коэффициенту, скоростному напору и площади ми-
деля тела (у крыла -его площади),


Если обозначить полную-аэродинамическую силу со­противления воздуха буквой R, аэродинамический коэф­фициент ее - скоростной напор - q, а площадь кры­ла- то формулу сопротивления воздуха можно запи­сать следующим обвазом:


атак как скоростной напор равен

иметь вид:


формула будет


Приведенная формула силы сопротивления воздуха шляется основной, так как по аналогичным ей форму-пай можно определить величину любой аэродинамиче-кой силы, заменив только обозначение силы и ее ко­эффициента.

Полная аэродинамическая сила и ее составляющая

Поскольку кривизна крыла сверху больше, чем сни-зу, то при встрече его с воздушным потоком согласно закону постоянства секундного расхода воздуха, мест­ная скорость обтекания крыла вверху больше, чем вни­зу, а у ребра атак она резко уменьшается и в отдельных точках падает до нуля. Согласно закону Бернулли пе­ред крылом и под ним возникает область повышенного давления; над крылом и за ним возникает область по­ниженного давления. Кроме того, вследствие вязкости воздуха. возникает сила, трения в пограничном слое. Кар-тина распределения давлений по профилю крыла зави­сит от положения крыла в воздушном потоке, для ха­рактеристики которого пользуются понятием «угол атаки».

Углом, атаки крыла (α) называется угол, заключен­ный между направлением хорды крыла и набегающим потоком воздуха или направлением вектора скорости по­лета, (рис. 11).

Распределение давления по профилю изображается и виде векторной диаграммы. Для ее построения вычер­чивают профиль крыла, размечают на нем точки, в ко-



торых измерялось давление, и от этих точек векторами откладывают величины избыточных давлений. Ноли в данной точке давление пониженное, то стрелку вектора направляют от профиля, если же давление повышенное, то к профилю. Концы векторов соединяют общей лини­ей. На рис. 12 изображена картина распределения дав­лений по профилю крыла на малых и больших углах атаки. Из нее видно, что наибольшее разрежение полу­чается на верхней поверхности крыла в месте макси­мального сужения струек. При угле атаки, равном ну­лю, наибольшее разрежение будет в месте наибольшей толщины профиля. Под крылом также происходит су­жение струек, в результате чего и там будет зона раз­режения, но меньшая, чем над крылом. Перед носком крыла - область повышенного давления.

При увеличении угла атаки зона разрежения смеща­ется к ребру атаки и значительно увеличивается. Это происходит потому, что место наибольшего сужения струек перемещается к ребру атаки. Под крылом час­тицы воздуха, встречая нижнюю поверхность крыла, притормаживаются, в результате чего давление повы­шается.

Каждый вектор избыточного давления, изображен­ный на диаграмме, представляет собой силу, действую­щую на единицу поверхности крыла, то есть каждая стрелка обозначает в определенном масштабе величину избыточного давления, или разность между местным давлением и давлением в невозмущенном потоке:

Просуммировав все векторы, можно получить аэро­динамическую силу без учета сил трения. Данная сила с учетом силы трения воздуха в пограничном слое сос­тавит полную аэродинамическую силу крыла. Таким образом, полная аэродинамическая сила (R) возникает ко причине разности давлений перед крылом и за ним, под крылом и над ним, а также в результате трения воздуха в пограничном слое.

Точка приложения полной аэродинамической силы находится на хорде крыла и называется центром дав­ления (ЦД). Поскольку полная аэродинамическая сила действует в сторону меньшего давления, то она будет направлена вверх и отклонена назад.

В соответствии с основным законом сопротивления

Рис. 13. Разложение полной аэродинамической силы крыла на сос­тавляющие

воздуха полная аэродинамическая сила выражается фор­мулой:

Полную аэродинамическую силу принято рассмат­ривать как геометрическую сумму двух составляющих: одна из них, У, перпендикулярная невозмущенному по­току, называется подъемной силой, а другая, Q, на­правленная противоположно движению крыла, называ­ется силой лобового сопротивления.

Каждую из этих сил можно рассматривать как алгеб­раическую сумму двух слагаемых: силы давления и си­лы трения. Для подъемной силы практически можно пренебречь вторым слагаемым и считать, что она явля­ется только силой давления. Сопротивление же нужно рассматривать как сумму сопротивления давления и сопротивления трения (рис. 13).

Угол, заключенный между векторами подъемной си­лы и полной аэродинамической силы, называется углом Качества (Θк).


Подъемная сила крыла

Подъемная сила (У) создается за счет разности средних давлений снизу и сверху крыла.

При обтекании несимметричного профиля скорость потока над крылом больше, чем под крылом, вследствие большей кривизны верхней поверхности крыла и, в со­ответствии с законом Бернулли, давление сверху оказы­вается меньше, чем снизу.

Если профиль крыла симметричный и угол атаки равен нулю, то обтекание является симметричным, дав­ление над крылом и под ним одинаковое и подъемной силы не возникает (рис. 14). Крыло симметричного про­филя создает подъемную силу только при отличном от нуля угле атаки.



Отсюда следует, что величина подъемной силы рав­на произведению разности избыточных давлений под крылом (Ризб.нижн) и над ним (Ризб. верхн) на площадь крыла:

С Y -коэффициент подъемной силы, который опре­деляется опытным путем при продувке крыла в аэроди­намической трубе. Величина его зависит: 1 - от формы крыла, которая принимает главное участие в создании подъемной силы; 2 - от угла атаки (ориентировка кры­ла относительно потока); 3 - от степени обработки крыла (отсутствие шероховатостей, целостность мате­риала и пр.).

Если по данным продувки крыла несимметричного профиля в аэродинамической трубе на различных уг­лах атаки построить график, то он будет выглядеть следующим образом (рис. 15).

Из него видно, что:

1. При некотором отрицательном значении угла ата­ки коэффициент подъемной силы равен нулю. Это угол аыки нулевой подъемной силы и обозначается он α0.

2. С увеличением угла атаки до некоторого значения



Рис. 14. Обтекание кры­ла дозвуковым потоком: а - спектр обтекания (пограничный слой не показан); б - распреде­ление давления (картина давления)

Рис. 15. График зависи­
мости коэффициента
подъемной силы и коэф­
фициента лобового со­
противления от угла
атаки.


Рис, 16. Срыв потока на закритических углах атаки: в точке А давление больше, чем в точке Б, а в точке В давление больше, чем в точках А и Б

коэффициент подъемной силы возрастает пропорцио­нально (по прямой линии), после некоторого значения угла атаки прирост коэффициента подъемной силы уменьшается, что объясняется образованием завихрений на верхней поверхности.

3. При определенном значении угла атаки коэффи­циент подъемной силы достигает максимального значе­ния. Этот угол называется критическим и обозначается α кр. Затем при дальнейшем увеличении угла атаки ко­эффициент подъемной силы уменьшается, что происходит из-за интенсивного срыва потока с крыла, вызванного движением пограничного слоя против движения основ­ного потока (рис. 16).

Диапазон эксплуатационных углов атаки составляют углы от α 0 до α кр. На углах атаки, близких к критиче­ским, крыло не обладает достаточной устойчивостью и плохо управляется.

Похожие статьи