Из каких взаимосвязанных частей состоит анализатор. Анатомия слухового анализатора анализатор состоит из трех

04.03.2020

Что называют анализатором? Из каких частей состоит анализатор? Где расположены области коры головного мозга, отвечающие за анализ зрительной и слуховой информации? Приведите примеры, показывающие важность процесса обработки информации от органов чувств в коре полушарий головного мозга.

Ответы:

Сигнал от рецепторов через несколько промежуточных этапов проходит в кору больших полушарий головного мозга. За обработку информации, приходящие от каждого из органов чувств, отвечает определенный участок коры больших полушарий. Рецепторы, проводящие пути нервной системы и участок коры больших полушарий вместе образуют анализатор. В затылочной зоне лежит зрительная область коры больших полушарий, в височной - слуховая, в теменной - область, отвечающая за восприятие прикосновений. Повреждение соответствующих зон коры больших полушарий приводит к потере способности анализировать сигналы. Так, при повреждении затылочной области коры человек не может анализировать зрительную информацию: он почти не отличается от слепого. Учёные назвали это нарушение «центральной слепотой». О важности анализа информации от органа чувств в коре больших полушарий говорят такие примеры. Рецепторы органов слуха у разных млекопитающих имеет сходное строение. В головном мозге летучей мыши происходит анализ испускаемого и отраженного звуков, и она в темноте точно определяет расположение предметов, чего не может сделать человек. Но, благодаря слуховой коре и центрам речи, расположенных в коре больших полушарий, у человека последовательность звуков сопоставляется с определенным смысловым значением. Человек легко узнает знакомые мелодии, сопоставляя звуковой сигнал с образцами мелодий (музыкальная память).

Сенсорные системы обеспечивают восприятие и отражение в сознании человека всех явлений повседневной жизни. Органы чувств являются начальным отделом анализаторов. Анализатор состоит из 3-х отделов:

1) периферический отдел – рецепторы;

2) проводниковый отдел – соответствующий нерв (чувствительный);

3) центральный отдел – соответствующая зона коры больших полушарий.

Классификация рецепторов:

1) по местоположению:

а) внутренние – во внутренних органах;

б) наружные – в коже.

2) по избирательности:

а) терморецепторы (воспринимают холод и тепло);

б) фоторецепторы (воспринимают свет);

в) хеморецепторы (воспринимают химические вещества);

г) ноцирецепторы (воспринимают боль).

Д) механорецепторы (воспринимают механическое раздражение).

Орган зрения.

Строение и функции органа зрения.

Орган зрения представлен глазным яблоком и вспомогательным аппаратом (глазодвигательные мышцы, веки, ресницы, брови, слезные железы).

Глазное яблоко состоит из трех оболочек:

1) наружная - фиброзная – непрозрачная, плотная; спереди переходит в прозрачную роговицу (неороговевающий плоский многослойный эпителий), а остальная часть называется склера (плотная волокнистая ткань).

2) средняя сосудистая – состоит из ресничного тела, радужки и собственно сосудистой оболочки, в которой находится большое количество кровеносных капилляров. Передняя часть – радужка – имеет отверстие посередине (зрачок) и пигмент меланин, количество которого определяет цвет глаз. В радужке есть 2 слоя мышц – сфинктер (волокна расположены циркулярно) и расширитель (волокна расположены радиально) зрачка. К ресничному телу с помощью цинновой связки крепится хрусталик – двояковыпуклая линза. При натяжении связки (расслаблении ресничного тела) хрусталик уплощается (установка на дальнее видение), при расслаблении связки (сокращении ресничного тела) хрусталик становится выпуклым (установка на ближнее видение). Это называется аккомодация глаза.

Между роговицей и радужкой, а также радужкой и хрусталиком имеются соответственно передняя и задняя камеры глаза, заполненные водянистой влагой – жидкость, которая снабжает питательными веществами роговицу и хрусталик, так как в них нет кровеносных капилляров.

3) внутренняя сетчатка – содержит светочувствительные клетки – фоторецепторы (колбочки и палочки). В сетчатке насчитывается 125 млн палочек и 6 млн колбочек. Колбочки отвечают за цветовое зрение и воспринимают форму и детали предметов. В сетчатке имеется три типа колбочек, каждый из которых содержит один из пигментов (йодопсин, хлоролаб, эритлаб); при смешивании этих пигментов получаются все остальные цвета. Колбочки в основном сосредоточены в центральной части сетчатки – желтом пятне (место наилучшего видения). Сбоку от него находится место выхода зрительного нерва – слепое пятно (здесь нет рецепторов). Палочки обеспечивают сумеречное зрение. Их количество возрастает к периферии сетчатки. Фоторецепторы содержат пигмент родопсин (белок опсин и витамин А).

Полость глаза заполнена прозрачной желеобразной массой – стекловидным телом.

Оптическая система глаза:

Роговица (преломляет)→ водянистая влага → хрусталик (фокусирует)→ стекловидное тело.

Роговица наиболее сильно преломляет.

Формирование зрительного образа:

Лучи света проходят в глаз через роговицу, в которой происходит их основное преломление. Во влаге передней камеры лучи света не преломляются. Дополнительное преломление лучей и точная фокусировка производятся уже хрусталиком. Но прежде, чем достигнуть хрусталика, лучи проходят через зрачок. При высокой яркости света зрачок автоматически сужается и ограничивает излишнюю яркость. При слабой яркости лучей зрачок, соответственно, становится более широким. Хрусталик при преломлении лучей может делать это более точно, чем роговица, за счет своей способности изменять силу преломления. Ресничное тело со своей круговой мышцей в виде баранки окружает хрусталик таким образом, что от него к оболочке (капсуле) хрусталика идут тонкие радиальные связки. Когда мышца цилиарного тела расслаблена (при фокусировании взора на далеких предметах), эта мышечная «баранка» имеет максимально большой диаметр. В этом случае радиальные связки натянуты тоже максимально. Капсула хрусталика делает его наиболее плоским и имеющим минимальную силу преломления.

Если мы рассматриваем предмет с близкого расстояния, например, буквы при чтении, то цилиарная мышца автоматически напрягается больше, то есть эта мышечная «баранка» имеет наименьший диаметр. Тогда радиальные связки расслаблены и минимально натягивают капсулу хрусталика, расслабляют ее так, что хрусталик становиться наиболее толстым и может фокусировать лучи от букв на сетчатке. Появляется возможность прочесть текст. У людей молодого возраста, имеющих нормальное зрение, ткань хрусталика максимально эластична и позволяет хрусталику легко менять свои преломляющие возможности в пределах 3х диоптрий. Этого достаточно, чтобы хорошо видеть и вдаль, и вблизи. Пройдя хрусталик, сфокусированные лучи попадают на светочувствительный слой нервных клеток сетчатки. В центре сетчатки («желтое пятно») располагаются только специальные нервные клетки (колбочки), обеспечивающие остроту зрения глаза, форму и цвет окружающего мира.

Основная функция которых состоит в восприятии информации и формировании соответствующих реакций. При этом информация может идти как из окружающей среды, так и изнутри самого организма.

Общее строение анализатора . Само понятие «анализатор» появилось в науке благодаря известному ученому И. Павлову. Именно он впервые определил их как отдельную систему органов и выделил общую структуру.

Несмотря на все разнообразие строение анализатора, как правило, довольно типичное. Он состоит из рецепторного отдела, проводящей части и центрального отдела.

  • Рецепторная, или периферическая часть анализатора представляет собой рецептор, который приспособлен к восприятию и первичной обработке определенной информации. Например, ушной завиток реагирует на звуковую волну, глаза — на свет, кожные рецепторы — на давление. В рецепторах информация о воздействии раздражителя перерабатывается в нервный электрический импульс.
  • Проводниковые части — отделы анализатора, которые представляют собой нервные пути и окончания, которые идут к подкорковым структурам головного мозга. Примером может служить зрительный, а также слуховой нерв.
  • Центральная часть анализатора — это зона коры головного мозга, на которую проектируется полученная информация. Здесь, в сером веществе, осуществляется окончательная переработка информации и выбор наиболее подходящей реакции на раздражитель. Например, если прижать палец к чему-то горячему, то терморецепторы кожи проведут сигнал к головному мозгу, откуда поступит команда одернуть руку.

Анализаторы человека и их классификация . В физиологии принято разделять все анализаторы на внешние и внутренние. Внешние анализаторы человека реагируют на те раздражители, которые приходят из внешней среды. Рассмотрим их более подробно.

  • Зрительный анализатор . Рецепторная часть данной структуры представлена глазами. Человеческий глаз состоит из трех оболочек — белковой, кровеносной и нервной. Количество света, которое поступает на сетчатку, регулируется зрачком, который способен расширятся и суживаться. Луч света переламывается на роговице, хрусталике и в Таким образом, изображение попадает на сетчатку, которая содержит множество нервных рецепторов — палочек и колбочек. Благодаря химическим реакциям здесь формируется электрический импульс, которые следует по и проектируется в затылочных долях коры головного мозга.
  • Слуховой анализатор . Рецептором здесь является ухо. Внешняя его часть собирает звук, средняя представляет собой путь его прохождения. Вибрация продвигается по отделам анализатора до тех пор, пока не достигнет завитка. Здесь колебания вызывают движение отолитов, которое и формирует нервный импульс. Сигнал идет по слуховому нерву к височным долям головного мозга.
  • Обонятельный анализатор . Внутренняя оболочка носа покрыта так называемым обонятельным эпителием, структуры которого реагируют на молекулы запаха, создавая нервные импульсы.
  • Вкусовые анализаторы человека . Они представлены вкусовыми сосочками — скоплением чувствительных химических рецепторов, которые реагируют на определенные
  • Тактильные, болевые, температурные анализаторы человека — представленные соответствующими рецепторами, расположенными в разных слоях кожи.

Если говорить о внутренних анализаторах человека, то это те структуры, которые реагируют на изменения внутри организма. Например, в мышечной ткани есть специфические рецепторы, которые реагируют на давление и другие показатели, которые изменяются внутри тела.

Еще один яркий пример — это который реагирует на положение всего тела и его частей относительно пространства.

Стоит отметить, что анализаторы человека имеют собственные характеристика, а эффективность их работы зависит от возраста, а иногда и от пола. Например, женщины различают больше оттенков и ароматов, чем мужчины. Представители же сильной половины, имеют больше

Свет состоит из частиц, называемых фотонами, каждую из которых можно рассматривать как пакет электромагнитных волн. Будет ли луч электромагнитной энергии именно светом, а не рентгеновскими лучами или радиоволнами, определяется длиной волны - расстоянием от одного гребня волны до следующего: в случае света это расстояние составляет приблизительно 0,0000001 (10-7) метра, или 0,0005 миллиметра, или 0,5 микрометра, или 500 нанометров (нм).

Свет - это то, что мы можем видеть. Наши глаза могут воспринимать электромагнитные волны длиной от 400 до 700 нм. Обычно попадающий в наши глаза свет состоит из сравнительно однородной смеси лучей с различными длинами волн; такую смесь называют белым светом (хотя это весьма нестрогое понятие). Для оценки волнового состава световых лучей измеряют световую энергию, заключенную в каждом из последовательных небольших интервалов, например от 400 до 410 нм, от 410 до 420 нм и т. д., после чего рисуют график распределения энергии по длинам волн. Для света, приходящего от солнца, этот график похож на левую кривую на рис. 8.1. Это кривая без резких подъемов и спадов с пологим максимумом в области 600 нм. Такая кривая типична для излучения раскаленного объекта. Положение максимума зависит от температуры источника: для Солнца это будет область около 600 нм, а для звезды более горячей, чем наше Солнце, максимум сдвинется к более коротким волнам - к голубому концу спектра, т. е. на нашем графике - влево. (Представление художников о том, что красные, оранжевые и желтые цвета - теплые, а синие и зеленые - холодные, связано только с нашими эмоциями и ассоциациями и не имеет никакого отношения к спектральному составу света от раскаленного тела, зависящему от его температуры, - к тому, что физики называют цветовой температурой.)

Если мы будем каким-то способом фильтровать белый свет, удаляя все, кроме узкой спектральной полосы, то получим свет, который называют монохроматическим (см. график на рис. 8.1 справа).

Зрение основано на обнаружении электромагнитного излучения. Электромагнитный спектр имеет широкий диапазон, и видимая часть составляет лишь очень малую долю.

Энергия электромагнитного излучения обратно пропорциональна длине волны. Длинные волны несут слишком мало энергии, чтобы активировать фотохимические реакции, лежащие в основе фоторецепции. Энергия коротких волн так велика, что они повреждают живую ткань.

Рис. 8.1. Слева: энергия света (например, солнечного) распределена в широком диапазоне длин волн - примерно от 400 до 700 нанометров. Слабо выраженный пик определяется температурой источника: чем горячее источник, тем больше смещение пика к синему (коротковолновому) концу. Справа: монохроматический свет - это свет, энергия которого сосредоточена в основном в области какой-то одной длины волны. Его можно создать при помощи разнообразных фильтров, лазера или спектроскопа с призмой или дифракционной решеткой.

Большая часть коротковолнового излучения Солнца поглощается озоновым слоем атмосферы (в узком участке спектра - от 250 до 270 нм): если бы этого не было, жизнь на Земле вряд ли могла возникнуть. Все фотобиологиче- ские реакции ограничены узким участком спектра между двумя этими областями.

Большая часть информации, получаемая водителем от дороги, среды движения и автомобиля, представляет собой условные сигналы. Дорожные знаки, разметка, показания контрольных приборов являются условными сигналами, несущими информацию, необходимую для выполнения целенаправленных управляющих действий или их прекращения. Нервная система в процессе всей деятельности непрерывно расчленяет сложные раздражители, действующие на наши органы чувств, на более простые составные элементы (анализ) и тут же объединяет их соответствующие обстановке системы (синтез).

Любой рефлекторный акт связан с определённой областью коры головного мозга. Все процессы, протекающие в головном мозге, материальны (в их основе лежат материальные процессы, протекающие в определённых частях нервной системы).

Всю информацию, необходимую для управления автомобилем, водитель получает с помощью анализаторов. Каждый анализатор состоит из трех отделов. Первый отдел - наружный, воспринимающий аппарат, в котором происходит превращение энергии воздействующего раздражителя в нервный процесс. Эти наружные анатомические образования и есть органы чувств. Второй отдел - это чувствительные нервы. Третий отдел - центр, который представляет собой специализированный участок коры головного мозга, превращающий нервные раздражения в соответствующее ощущение. Так, в зрительном анализаторе первым, наружным отделом является внутренняя оболочка глазного яблока, состоящая из светочувствительных клеток - колбочек и палочек. Раздражение этих клеток, передаваемое по зрительному нерву в центр зрительного анализатора, дает ощущение света, цвета и зрительное восприятие предметов внешнего мира. Центр зрительного анализатора находится в затылочной области головного мозга .

Кроме специфических свойств анализаторы имеют и общие свойства. Общим свойством анализатора является их высокая возбудимость, выражающаяся в возникновении очага возбуждения в коре головного мозга даже при небольшой силе раздражителя. Всем анализаторам присуща иррадиация возбуждения, при которой возбуждение из центра анализатора распространяется на соседние участки коры головного мозга. Следующей особенностью анализаторов является адаптация, т.е. способность в большом диапазоне воспринимать раздражители различной силы. Фоторецепторы - это один из видов сенсорных органов (систем), отвечающие за зрение. Именно возможностями фоторецепторов определяется оптическая ориентация.

Фоторецепторные клетки содержат пигмент (обычно это родопсин), который под действием света обесцвечивается. При этом изменяется форма молекул пигмента, причем в отличие от выцветания, с каким мы встречаемся в повседневной жизни, такой процесс обратим. Он ведет к еще не совсем понятным электрическим изменениям в рецепторной мембране.

Человеческого глаз окружен плотной оболочкой - склерой, прозрачной в передней части глаза, где она называется роговицей. Непосредственно изнутри роговица покрыта черной выстилкой - сосудистой оболочкой, которая снижает пропускающую и отражающую способность боковых частей глаза. Сосудистая оболочка выстлана изнутри светочувствительной сетчаткой. Спереди сосудистая оболочка и сетчатка отсутствуют. Здесь находится крупный хрусталик, делящий глаз на переднюю и заднюю камеры, заполненные соответственно водянистой влагой и стекловидным телом. Перед хрусталиком расположена радужка - мышечная диафрагма с отверстием, называемым зрачком. Радужка регулирует размеры зрачка и тем самым количество света, попадающее в глаз. Хрусталик окружен ресничной мышцей, которая изменяет его форму. При сокращении мышцы хрусталик становится более выпуклым, фокусируя на сетчатке изображение предметов, рассматриваемых вблизи. При расслаблении мышцы хрусталик уплощается, и в фокус попадают более отдаленные предметы.

Фоторецепторы делятся на два типа - палочки и колбочки. Палочки, более вытянутые по сравнению с колбочками, очень чувствительны к слабому освещению и обладают только одним типом фотопигмента -родопсином. Поэтому палочковое зрение бесцветное. Оно также отличается малой разрешающей способностью (остротой), поскольку много палочек соединено только с одной ганглиозной клеткой. То, что одно волокно зрительного нерва получает информацию от многих палочек, повышает чувствительность в ущерб остроте. Палочки преобладают у ночных видов, для которых важнее первое свойство.

Колбочки наиболее чувствительны к сильному освещению и обеспечивают острое зрение, так как с каждой ганглиозной клеткой связано лишь небольшое их число. Они могут быть разных типов, обладая специализированными фотопигментами, поглощающими свет в различных частях спектра. Таким образом, колбочки служат основой цветового зрения. Они наиболее чувствительны к тем длинам волн, которые сильнее всего поглощаются их фотопигментами. Зрение называют монохроматическим, если активен лишь один фотопигмент, например, в сумерках у человека, когда работают только палочки.

В 1825 г. чешский физиолог Ян Пуркинье заметил, что красные цвета кажутся ярче синих днем, но с наступлением сумерек их окраска блекнет раньше, чем у синих. Как показал в 1866 г. Щульц, это изменение спектральной чувствительности глаза, названное сдвигом Пуркинъе, объясняется переходом от колбочкового зрения к палочковому во время темповой адаптации. Это изменение чувствительности при темповой адаптации можно измерить у человека, определяя порог обнаружения едва видимого света через разные промежутки времени пребывания в темной комнате. По мере адаптации этот порог постепенно снижается.

Долю колбочкового зрения можно определить, направляя очень слабый свет на центральную ямку на сетчатке, в которой палочки отсутствуют. Долю участия в восприятии палочек определяют у «палочковых монохроматов», т. е. у редких индивидуумов, лишенных колбочек. Палочки гораздо чувствительнее к свету, чем колбочки, но содержат только один фотопигмент-родопсин, максимальная чувствительность которого лежит в синей части спектра. Поэтому синие предметы кажутся в сумерках ярче предметов других цветов. Для нескольких миллионов людей на земле нет почти никакой разницы между красным сигналом и зеленым. Это дальтоники - люди с нарушенным цветным зрением. Среди мужчин дальтоники составляют - 4 - 6%, а среди женщин 0,5%.

Раздражителем зрительного анализатора является свет, и рецептором является позитивная энергия. Зрение позволяет воспринимать цвет, форму, яркость и движение предмета. Возможности зрительного восприятия определяются следующие характеристики:

  • 1) энергетическими;
  • 2) пространственными;
  • 3) временными;
  • 4) информационными.

Энергетические характеристики зрительного анализатора определяются мощностью или интенсивностью светового тока (диапазон яркости, контраст). Яркость предмета - это величина (3

где J - сила света;

S - величина светящейся поверхности;

а - угол, под которым рассматривается поверхность.

В общем случае яркость определяется двумя составляющими:

  • 1) яркость излучения;
  • 2) яркость отражения.

Яркость излучения определяется мощностью источника света, а яркость отражения уравнением освещенностью данной поверхности.

Коэффициент отражения определяется цветом поверхности: белый-0,9; желтый - 0,75; зеленый - 0,52; синий - 0,40; коричневый-0,10; черный-0,05.

Под адаптирующей яркостью понимают ту яркость, на которую настроен в данное время зрительный анализатор.

Видимость предметов определяется также контрастностью, которая бывает:

  • - прямая (предмет темнее фона);
  • - обратная (предмет ярче фона).

Для обеспечения необходимого контраста вводится понятие порогового контраста, т.е. min разница яркости предмета и фона впервые, обнаруживаемая глазом.

Для получения оперативного порога (нормальная видимость) необходимо, чтобы фактическая разница в яркости предмета и фона была выше пороговой в 10 - 15 раз. Большое влияние на условие видимости оказывает величина внешней освещенности.

Для создания оптимальных условий зрение необходимо обеспечивать:

  • 1. Требуемую яркость;
  • 2. Контраст;
  • 3. Равномерное распределение яркости в поле зрения.

Глаз человека воспринимает электромагнитные волны в диапазоне от 380 до 760 Нм.

Самую нужную от 500 до 600 Нм (желто-зеленое излучение).

Важнейшей характеристикой глаза является относительная характеристика

S - ощущение, вызываемое источником мощности для 550 длины.

Sx - ощущение, вызывающие источником той же мощности данной х.

Кривая относительной видимости показывает, что для обеспечения одинакового зрительного ощущения необходимо, чтобы мощность синего излучения была в 16 раз, а красного в 9 раз больше мощности желто-зеленого.

Восприятие цвета в действительности водителем важно по 2 причинам:

  • 1) цвет может использоваться как один из способов кодирования информации;
  • 2) эстетическое оформление для улучшения зрительного восприятия.

Основной информационной характеристикой зрительного анализатора

является его пропускная способность (количество информации, которую он способен воспринять в единицу времени) - воронка.

Реторецепторы способны воспринимать 5,6-109 движения в секунду.

В подобном принципе работы зрительного восприятия заложен глубокий биологический смысл. «Информационная воронка» повышает надежность смены передач и резко сокращает вероятность ошибочного финала.

Пространственные и временные характеристики зрительного анализатора.

  • 1) острота зрения;
  • 2) поле зрения;
  • 3) объем зрительного восприятия.

Острота зрения - способность глаза различать мелкие детали предмета, она зависит от уровня освещенности, от расстояния до предмета, его положения относительно наблюдателя, от возраста.

Пороговый уровень восприятия составляет 15 смен. Для простых предметов 30-40 смен для сложных форм.

Каждый характер зрительного восприятия является его объем, т.е. количество предметов, который может охватить человек во время одного взгляда.

Поле зрение человека можно разделить на 3 зоны

  • 1 зона: 4 градуса.
  • 2 зона: 40 градусов.
  • 3 зона: 90 градусов.
  • 1 зона - зона центрального видения (наиболее четкое различение деталей);
  • 2 зона - зона ясного видения;
  • 3 зона - зона переферийного видения.

Большую роль в зрении играет движение глаз, которое подразделяются:

  • 1) гностические (познавательные);
  • 2) поисковые (установочные).

Время, в течение которого глаз познает предмет, составляет от 0,2 до 0,4 секунды.

Время, в течение которого переносится взгляд - 0,025 - 0,03 секунды.

Временные характеристики зрительного анализатора определяются временем, необходимым для возникновения зрительного оснащения.

  • 1) латентный (скрытый) период зрительной реакции.
  • 2) длительность инерции ощущению;
  • 3) критическая частота мелькания.

Латентным периодом называют промежуток времени от момента подачи сигнала до возникновения ощущения. Этот период зависит от интенсивности сигнала; от его значимости; от сложности работы оператора. Для большинства людей от 160 до 240.

Если возникает необходимость в последовательном реагировании на появляющиеся сигналы, то период их следования должен быть не меньше времени сохранения ощущения 0,2-0,5 секунды.

Критической частотой мелькания называется та min частота проблесков, при которой возникает слитное восприятие. Она зависит от яркости, размеров, и конфигурации от 15 до 25 Герц.

Вопрос о частоте мелькания имеет значение при решении 2 задач:

  • 1) в тех случаях, чтобы эта частота мелькания не замечалась.
  • 2) для привлечения внимания операторов (аварийная ситуации) 8 Герц - оптимальная частота.

К временным характеристикам зрительного анализа относится - время при переходе от света к темноте.

Анализатор состоит из трех анатомически и функционально связанных между собой элементов: 1) рецептора – периферического отдела 2) проводникового отдела 3) коркового или центрального отдела.

Рецепторы воспринимают внешние воздействия и изменения внутренней среды организма. В рецепторах происходят сложный процесс первичного анализа раздражителей и преобразование сигналов внешнего и внутреннего мира в нервные импульсы.

Проводниковый отдел анализатора включает чувствительные (афферентные) нейроны и проводящие пути от рецептора до коры полушарий большого мозга. На своем пути к корковому отделу анализатора импульсы проходят через ряд центров спинного мозга, ствола головного мозга и таламуса. В каждом центре осуществляется переработка сигналов, их интеграция с другими типами информации.

Корковый отдел анализатора представляет собой участки коры БП, воспринимающие информацию от соответствующих рецепторов. Афферентные волокна, несущие сигналы от различных рецепторов, приходят в определенные участки коры. Павловым эти участки были названы корковым ядром анализатора. В коре происходит высший анализ информации.

Орган слуха воспринимает звуковые сигналы и состоит из трех частей: наружного, среднего и внутреннего уха. Среднее и внутреннее ухо расположены в пирамиде височной кости, наружное – вне ее.

К наружному уху относят ушную раковину и наружный слуховой проход. Ушная раковина улавливает звуки и направляет их в наружный слуховой проход.

В глубине наружного слухового прохода, на границе его со средним ухом находится барабанная перепонка, покрытая снаружи истонченной кожей. Изнутри, со стороны полости среднего уха барабанная перепонка покрыта слизистой оболочкой. Барабанная перепонка имеет округлоовальную форму, диаметр ее составляет от 10 мм до 8, 5 мм, толщина – 0, 1 мм. Она расположена под углом к оси наружного слухового прохода и немного втянута в сторону среднего уха.

Среднее ухо располагается внутри каменистой части височной кости и состоит из барабанной полости, слуховой трубы, соединяющей слуховую полость с глоткой, сосцевидного отростка с его костными ячейками.

Слуховая, или евстахиева, труба представляет собой канал длиной (у взрослых) 3, 5 см, соединяющий барабанную полость с носоглоткой. Барабанное устье евстахиевой трубы расположено в передней стенке барабанной полости, а носоглоточное - в боковой стенке носоглотки.

Внутреннее ухо, или ушной лабиринт, представляет собой систему каналов и полостей в толще височной кости. Эта система состоит из преддверия, полукружных каналов и улитки. Различают костный и перепончатый лабиринты, причем костный лабиринт является как бы футляром для перепончатого.

Перепончатый лабиринт наполнен особой жидкостью - эндолимфой, а пространство между перепончатым и костным лабиринтами также заполнено жидкостью - перилимфой

В улитковом ходе расположен кортиев (спиральный) орган. Основной его функциональной частью являются слуховые клетки, заканчивающиеся чувствительными волосками и потому называемые также волосковыми клетками. Эти клетки расположены в несколько рядов и представляют собой специфический концевой аппарат слухового анализатора, или слуховой рецептор.

Проводниковый отдел слухового анализатора Слуховой нерв выходит из внутреннего уха через внутренний слуховой проход в полость черепа и проникает в основание мозга. Отсюда волокна слухового нерва направляются к слуховым ядрам продолговатого мозга, где находится тело первого нейрона. От слуховых ядер в продолговатом мозге берут начало отростки второго нейрона.

Часть нервных волокон от ядер идет по одноименной стороне, а большая часть их переходит на противоположную сторону. Далее волокна доходят до оливы про долговатого мозга, откуда берут начало отростки третьего нейрона. Волокна третьего нейрона заканчиваются в подкорковых слуховых центрах - заднем двухолмии и внутреннем коленчатом теле. Отсюда начинаются отростки последнего, четвертого, нейрона слухового пути, находящегося в корковом конце слухового анализатора - в височной доле мозга.

Центральный отдел слухового анализатора. Центральный конец слухового анализатора расположен в коре верхнего отдела височной доли каждого из полушарий головного мозга (в слуховой области коры).

Вестибулярный аппарат Преддверие составляет центральную часть лабиринта и состоит из двух перепончатых мешочков: переднего (круглого) и заднего (овального). Передний мешочек сообщается с улиткой, а задний - с полукружными каналами. Полукружных каналов три: верхний, задний и наружный. Они расположены в трех взаимно перпендикулярных плоскостях. Один из концов каждого канала гладкий, а другой имеет расширение - ампулу. Преддверие и полукружные каналы образуют вестибулярный аппарат и являются периферическим отделом пространственного анализатора, или органа равновесия.

Похожие статьи