Автоматизация технических процессов и производств. Введение

23.09.2019

Автоматизация технологических процессов заключается в сокращении или исключении ручного труда, затрачиваемого на установку, зажим и снятие деталей, управление станком и контроль размеров.
Автоматизация осуществляется в следующих направлениях:
а) автоматизация отдельных станков и агрегатов, которая производится как при проектировании вновь создаваемого оборудования, так и при модернизации работающего;
б) создание автоматических линий для изготовления определенной детали или изделия;
в) организация автоматических цехов и предприятий для производства изделий, которые выпускаются в больших количествах.
Автоматизация отдельных станков обеспечивает различную степень участия рабочего в выполнении операции. Создаются станки с полуавтоматическим циклом, при работе которых функции рабочего заключаются в установке заготовки, пуске станка и снятии обработанной детали. Примером могут служить токарные многорезцовые и зуборезные станки и станки с автоматическим циклом, оборудованные устройствами, обеспечивающими работу станка без участия рабочего; токарно-револьверные автоматы; станки для шлифования торцовых поверхностей поршневых колец и др.

Простейшим способом автоматизации является оснащение станков продольными и поперечными упорами, лимбами, отсчетными линейками, автоматическими конечными выключателями и переключателями, автоматическими устройствами для правки шлифовального круга, гидравлическими или пневматическими зажимами, загрузочными устройствами, средствами автоматического контроля и т. д.
Поточные линии для обработки массовых деталей создаются путем применения оборудования с различной степенью автоматизации. Автоматические поточные линии могут быть созданы на базе имеющегося оборудования путем оснащения станков автоматическими транспортными и загрузочными средствами. Однако при выпуске сложных деталей, обрабатываемых на станках разных типов, организация автоматической линии на базе действующих станков может оказаться дорогой и сложной. Поэтому большинство автоматических линий комплектуется из агрегатных, специального назначения и универсальных станков, в конструкциях которых заложены возможности включения их в автоматические линии.
В автоматических линиях операторы обычно работают на первой операции (установка детали) и на последней операции (снятие детали). Остальные рабочие—наладчики — заняты подналадкой станков, заменой инструмента и устранением возникающих неисправностей.

Преимуществом автоматических линий является сокращение затрат труда, более высокая производительность, снижение себестоимости изделий, сокращение цикла производства, объема заделов и сокращение потребности в производственных площадях.
В автомобильной и тракторной промышленности, сельскохозяйственном машиностроении, производстве шарикоподшипников, металлических изделий автоматические линии получают все большее применение не только для механической обработки деталей, но и для производства заготовок, холодной штамповки деталей и сборки узлов. Проектирование технологических процессов для обработки деталей на автоматических станочных линиях должно вестись с учетом особенностей автоматического обслуживания станков. Необходимо стремиться упростить линию и сделать ее более надежной, предусмотреть возможность создания в накопителях между операциями некоторого запаса деталей, обеспечивающего работу линии при подналадке одного из станков, облегчить условия смены инструмента, обеспечить хорошее удаление стружки, доступность узлов для ремонта и подналадки. При большом количестве операций целесообразно разделить линию на несколько частей, объединив в них однородные операции (фрезерование, сверление, растачивание и т. д.).
Большое место в автоматизации технологических процессов занимает внедрение станков, агрегатов и линий с программным управлением. Простейшим методом программного управления на токарных автоматах и полуавтоматах является управление всеми движениями органов станка при помощи распределительных валов с кулачками. Настройка распределительного вала и кулачков определяет программу работы станка.

На копировально-фрезерных, токарных гидро- и электрокопировальных станках программа движения суппорта задается копиром. Выпускаются станки, у которых программа перемещения рабочих органов оформляется в виде перфорированной карты и вводится в считывающий аппарат. Этот аппарат передает через электронное устройство команды исполнительным механизмам, включающим те или иные механизмы станка. Аналогичное устройство имеют станки, у которых программа записывается на магнитную ленту. Запись программы движений рабочих органов на таких станках может быть произведена при обработке первой детали рабочим высокой квалификации; затем программа воспроизводится неограниченное число раз считывающим аппаратом.

Автоматические линии из многих станков также работают как станки с программным управлением. Программа этих линий задается настройкой системы конечных выключателей, электрических, гидравлических и пневматических реле и другой аппаратуры. Получают распространение станки и автоматические линии, у которых управление рабочими органами осуществляется счетно-решающими машинами, работающими по заданной программе.
Станки с программным управлением обеспечивают автоматизацию процесса обработки, позволяют снизить время обработки, повысить производительность труда. Переналадка станков с программным управлением, работающих с перфокартами или магнитной лентой, не требует большого времени. Это позволяет автоматизировать процессы изготовления деталей, выпускаемых небольшими сериями.

Материал статьи написан на основе литературного источника "Технология производства двигателей внутреннего сгорания" М. Л. Ягудин

Внедрение на предприятия технических средств, позволяющих автоматизировать производственные процессы, является базовым условием эффективной работы. Разнообразие современных методов автоматизации расширяет спектр их применения, при этом затраты на механизацию, как правило, оправдываются конечным результатом в виде увеличения объемов изготавливаемой продукции, а также повышения ее качества.

Организации, которые идут по пути технологического прогресса, занимают лидирующие места на рынке, обеспечивают более качественные трудовые условия и минимизируют потребность в сырье. По этой причине крупные предприятия уже невозможно представить без осуществления проектов по механизации - исключения касаются лишь мелких ремесленнических производств, где автоматизация производства себя не оправдывает ввиду принципиального выбора в пользу ручного изготовления. Но и в таких случаях возможно частичное включение автоматики на некоторых этапах производства.

Основные сведения об автоматизации

В широком смысле автоматизация предполагает создание таких условий на производстве, которые позволят без участия человека выполнять определенные задачи по изготовлению и выпуску продукции. При этом роль оператора может заключаться в решении наиболее ответственных задач. В зависимости от поставленных целей, автоматизация технологических процессов и производств может быть полной, частичной или комплексной. Выбор конкретной модели определяется сложностью технической модернизации предприятия за счет автоматической начинки.

На заводах и фабриках, где реализована полная автоматизация, обычно механизированным и электронным системам управления передается весь функционал по контролю над производством. Такой подход наиболее рационален, если рабочие режимы не предполагают изменений. В частичном виде автоматизация внедряется на отдельных этапах производства или при механизации автономного технического компонента, не требуя создания сложной инфраструктуры управления всем процессом. Комплексный уровень автоматизации производства обычно реализуется на определенных участках - это может быть отдел, цех, линия и т. д. Оператор в данном случае контролирует саму систему, не затрагивая непосредственный рабочий процесс.

Системы автоматизированного управления

Для начала важно отметить, что такие системы предполагают полный контроль над предприятием, фабрикой или заводом. Их функции могут распространяться на конкретную единицу оборудования, конвейер, цех или производственный участок. В данном случае системы автоматизации технологических процессов принимают и обрабатывают информацию от обслуживаемого объекта и на основе этих данных оказывают корректирующее воздействие. Например, если работа выпускающего комплекса не отвечает параметрам технологических нормативов, система по специальным каналам изменит его рабочие режимы согласно требованиям.

Объекты автоматизации и их параметры

Главной задачей при внедрении средств механизации производства является поддержание качественных параметров работы объекта, что в результате отразится и на характеристиках продукции. На сегодняшний день специалисты стараются не углубляться в сущность технических параметров разных объектов, поскольку теоретически внедрение систем управления возможно на любой составной части производства. Если рассматривать в этом плане основы автоматизации технологических процессов, то в перечень объектов механизации войдут те же цеха, конвейеры, всевозможные аппараты и установки. Можно лишь сравнивать степени сложности внедрения автоматики, которая зависит от уровня и масштаба проекта.

Относительно параметров, с которыми ведут работу автоматические системы, можно выделить входные и выходные показатели. В первом случае это физические характеристики продукции, а также свойства самого объекта. Во втором - это непосредственно качественные показатели готового продукта.

Регулирующие технические средства

Приборы, обеспечивающие регулирование, применяются в системах автоматизации в виде специальных сигнализаторов. В зависимости от назначения они могут отслеживать и управлять различными технологическими параметрами. В частности, автоматизация технологических процессов и производств может включать сигнализаторы температурных показателей, давления, характеристик потока и т. д. Технически приборы могут быть реализованы как бесшкальные устройства с электрическими контактными элементами на выходе.

Принцип работы регулирующих сигнализаторов также различен. Если рассматривать наиболее распространенные температурные устройства, то можно выделить манометрические, ртутные, биметаллические и терморезисторные модели. Конструкционное исполнение, как правило, обуславливается принципом действия, но немалое влияние на него оказывают и условия работы. В зависимости от направления работы предприятия, автоматизация технологических процессов и производств может проектироваться с расчетом на специфические условия эксплуатации. По этой причине и регулирующие приборы разрабатываются с ориентировкой на использование в условиях повышенной влажности, физического давления или на действие химических веществ.

Программируемые системы автоматизации

Качество управления и контроля производственных процессов заметно повысилось на фоне активного снабжения предприятий вычислительными устройствами и микропроцессорами. С точки зрения промышленных нужд возможности программируемых технических средств позволяют не только обеспечивать эффективное управление технологическими процессами, но и автоматизировать проектирование, а также проводить производственные испытания и эксперименты.

Устройства ЭВМ, которые применяются на современных предприятиях, в режиме реального времени решают задачи регулирования и управления технологическими процессами. Такие средства автоматизации производства называются вычислительными комплексами и работают на принципе агрегатирования. Системы включают в состав унифицированные функциональные блоки и модули, из которых можно составлять различные конфигурации и приспосабливать комплекс к работе в определенных условиях.

Агрегаты и механизмы в системах автоматизации

Непосредственное исполнение рабочих операций берут на себя электрические, гидравлические и пневматические устройства. По принципу работы классификация предполагает функциональные и порционные механизмы. В пищевой промышленности обычно реализуются подобные технологии. Автоматизация производства в этом случае предполагает внедрение электрических и пневматических механизмов, конструкции которых могут включать электроприводы и регулирующие органы.

Электродвигатели в системах автоматизации

Основу исполнительных механизмов нередко формируют электромоторы. По типу управления они могут быть представлены в бесконтактном и контактном исполнениях. Агрегаты, которые управляются от релейно-контактных приборов, при манипуляциях оператором могут изменять направление движения рабочих органов, но скорость выполнения операций остается неизменной. Если предполагается автоматизация и механизация технологических процессов с применением бесконтактных устройств, то используют полупроводниковые усилители - электрические или магнитные.

Щиты и пульты управления

Для установки оборудования, которое должно обеспечивать управление и контроль производственного процесса на предприятиях, монтируются специальные пульты и щиты. На них размещают приборы для автоматического управления и регулирования, контрольно-измерительную аппаратуру, защитные механизмы, а также различные элементы коммуникационной инфраструктуры. По конструкции такой щит может представлять собой металлический шкаф или плоскую панель, на которой и устанавливаются средства автоматизации.

Пульт, в свою очередь, является центром для дистанционного управления - это своего рода диспетчерская или операторская зона. Важно отметить, что автоматизация технологических процессов и производств должна предусматривать и доступ к обслуживанию со стороны персонала. Именно эта функция во многом и определяется пультами и щитами, позволяющими вести расчеты, оценивать производственные показатели и в целом отслеживать рабочий процесс.

Проектирование систем автоматизации

Основным документом, который выступает руководством для технологической модернизации производства с целью автоматизации, является схема. На ней отображается структура, параметры и характеристики устройств, которые в дальнейшем выступят средствами автоматической механизации. В стандартном исполнении схема отображает следующие данные:

  • уровень (масштаб) автоматизации на конкретном предприятии;
  • определение параметров работы объекта, которые должны быть обеспечены средствами контроля и регулирования;
  • характеристики управления - полное, дистанционное, операторское;
  • возможности блокировки исполнительных механизмов и агрегатов;
  • конфигурацию расположения технических средств, в том числе на пультах и щитах.

Вспомогательные средства автоматизации

Несмотря на второстепенную роль, дополнительные устройства обеспечивают важные контрольные и управляющие функции. Благодаря им обеспечивается та самая связь между исполнительными устройствами и человеком. В плане оснащения вспомогательными приборами автоматизация производства может предусматривать кнопочные станции, реле управления, различные переключатели и командные пульты. Существует множество конструкций и разновидностей данных устройств, но все они ориентированы на эргономичное и безопасное управление ключевыми агрегатами на объекте.

Типы систем автоматизации включают в себя:

  • неизменяемые системы. Это системы, в которых последовательность действий определяется конфигурацией оборудования или условиями процесса и не может быть изменена в ходе процесса.
  • программируемые системы. Это системы, в которых последовательность действий может изменяться в зависимости от заданной программы и конфигурации процесса. Выбор необходимой последовательности действий осуществляется за счет набора инструкций, которые могут быть прочитаны и интерпретированы системой.
  • гибкие (самонастраиваемые) системы. Это системы, которые способны осуществлять выбор необходимых действий в процессе работы. Изменение конфигурации процесса (последовательности и условий выполнения операций) осуществляется на основании информации о ходе процесса.

Эти типы систем могут применяться на всех уровнях автоматизации процессов по отдельности или в составе комбинированной системы.

В каждой отрасли экономики существуют предприятия и организации, которые производят продукцию или предоставляют услуги. Все эти предприятия можно разделить на три группы, в зависимости от их «удаленности» в цепочке переработки природных ресурсов.

Первая группа предприятий, это предприятия, добывающие или производящие природные ресурсы. К таким предприятиям относятся, например, сельскохозяйственные производители, нефтегазодобывающие предприятия.

Вторая группа предприятий, это предприятия, выполняющие переработку природного сырья. Они изготавливают продукцию из сырья, добытого или произведенного предприятиями первой группы. К таким предприятиям относятся, например, предприятия автомобильной промышленности, сталелитейные предприятия, предприятия электронной промышленности, электростанции и т.п.

Третья группа, это предприятия сферы услуг. К таким организациям относятся, например, банки, образовательные учреждения, медицинские учреждения, рестораны и пр.

Для всех предприятий можно выделить общие группы процессов, связанные с производством продукции или предоставлением услуг.

К таким процессам относятся:

  • бизнес процессы;
  • процессы проектирования и разработки;
  • процессы производства;
  • процессы контроля и анализа.
  • Бизнес процессы – это процессы, обеспечивающие взаимодействие внутри организации и с внешними заинтересованными сторонами (потребителями, поставщиками, надзорными органами и пр.). К этой категории процессов можно отнести процессы маркетинга и продаж, взаимодействия с потребителями , процессы финансового, кадрового, материального планирования и учета и пр.
  • Процессы проектирования и разработки – это все процессы, связанные с разработкой продукции или услуги. К таким процессам относятся процессы планирования разработки, сбора и подготовки исходных данных, выполнение проекта, контроль и анализ результатов проектирования и пр.
  • Процессы производства – это процессы, необходимые для производства продукции или предоставления услуг. К этой группе относятся все производственные и технологические процессы. Они также включают в себя процессы планирования потребности и планирования мощностей, логистические процессы и процессы обслуживания.
  • Процессы контроля и анализа – эта группа процессов связана со сбором и обработкой информации о выполнении процессов. К таким процессам относятся процессы контроля качества, операционного управления, процессы контроля запасов и пр.

Большинство процессов, относящихся к этим группам, может быть автоматизирована. На сегодняшний день, существуют классы систем, которые обеспечивают автоматизацию этих процессов.

Техническое задание на подсистему "Склады" Техническое задание на подсистему "Документооборот" Техническое задание на подсистему "Закупки"

Стратегия автоматизации процессов

Автоматизация процессов представляет собой сложную и трудоемкую задачу. Для успешного решения этой задачи необходимо придерживаться определенной стратегии автоматизации. Она позволяет улучшить процессы и получить от автоматизации ряд существенных преимуществ.

Кратко, стратегию можно сформулировать следующим образом:

  • понимание процесса. Для того чтобы автоматизировать процесс необходимо понимать существующий процесс со всеми его деталями. Процесс должен быть полностью проанализирован. Должны быть определены входы и выходы процесса, последовательность действий, взаимосвязь с другими процессами, состав ресурсов процесса и пр.
  • упрощение процесса. После проведения анализа процесса необходимо упростить процесс. Лишние операции, не приносящие ценности, должны быть сокращены. Отдельные операции могут объединяться или выполняться параллельно. Для улучшения процесса могут быть предложены другие технологии его исполнения.
  • автоматизация процесса. Автоматизация процессов может выполняться только после того, как процесс максимально упростился. Чем проще порядок действий процесса, тем проще его автоматизировать и тем эффективнее будет работать автоматизированный процесс.

В действительности этот процесс включает большое количество мероприятий, подразумевающих создание и использование специальных инструментов, которые работают в автоматическом режиме, разработку технологических процессов, которые обеспечивают увеличение производительности труда, делают прирост этого показателя постоянным.

Автоматизация проблемы и тенденции

Автоматизация технологических процессов и производств связана с проблемами,

которые чаще всего появляются из-за того, что каждое конкретное решение должно относиться к определённому процессу, изделию или детали. Так что должны учитываться все особенности, характерные для этих элементов. Особенно сложно бывает полностью соблюсти указанные размеры и формы. Качество детали также должно соответствовать самым высоким требованиям, иначе рабочий процесс невозможно будет организовать.

Какие требования должны выполнить предприятия, чтобы перейти к автоматизации?

Прежде всего, для увеличения производительности таким путём необходимо подготовить персонал, который смог бы не только управлять новой техникой, но и предлагать что-то новое в этой области. Обязательна кооперация и

При этом сама автоматизация технологических процессов и производств должна производиться только комплексно, не по отношению к конкретным деталям или элементам, а ко всей системе. Кроме того, необходимо как можно более грамотно рассчитывать те ресурсы, что уже имеются на предприятии. Только при выполнении этого условия система будет без всяких проблем работать на протяжении целого года.

Как ещё можно повысить производительность труда?

Прежде всего, автоматизация технологических процессов и производств позволяет уменьшить общее число рабочих, которые заняты в производстве. Благодаря современным технологиям один рабочий может обслуживать сразу несколько единиц техники. Так что энергия и отдача увеличиваются, неважно, в каком направлении работает то или иное предприятие.

Кроме того, автоматизация позволяет совершенствовать не только сами но и оборудование, которое используется во время работы.

Наконец, внимание можно уделить уменьшению стоимости самого производства. Снижение себестоимости можно обеспечить за счёт унификации и стандартизации использующихся в организации деталей, механизмов и узлов. При организации такого процесса, как автоматизация технологических процессов и производств, без решения подобных вопросов просто не обойтись.

Особенности современной автоматизации

Главное условие и требование, которое предъявляют системы автоматизации

технологических процессов, - использование наиболее простых схем для достижения максимального результата. Унифицировать необходимо не только сами детали, но и их конкретные элементы.

Кроме того, самим деталям надо стремиться придавать как можно более простую форму. Главное - чтобы сама форма соответствовала уровню современного производства, удовлетворяла все его требования.

Для упрощения современного производства не следует использовать материалы, которые трудно поддаются обработке.

В то же время любая деталь, которая подвергается обработке, должна быть закреплена прочно и надёжно. Автоматизация технологических процессов отрасли всегда требует этого. Благодаря этому не нужно будет искусственно что-то изменять, использовать дополнительное оборудование.

СРЕДСТВА АВТОМАТИЗАЦИИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

Под средством автоматизации технологического процесса понимается комплекс технических устройств, обеспечивающих перемещение исполнительных (рабочих) органов машины с заданными кинематическими параметрами (траектории и законы движения). В общем случае указанная задача решается посредством системы управления (СУ) и привода рабочего органа. Однако, в первых автоматических машинах выделить приводы и систему управления в отдельные модули невозможно. Пример структуры такой машины представлен на рис.1.

Автомат работает следующим образом. Асинхронный электродвигатель через главный передаточный механизм приводит в непрерывное вращение распределительный кулачковый вал. Далее движения передаются соответствующими толкателями через передаточные механизмы 1...5 на рабочие органы 1...5. Распределительный вал обеспечивает не только передачу механической энергии к рабочим органам, но и является пограммоносителем, согласовывая движение последних по времени. В машине, имеющей такую структуру, приводы и система управления интегрированы в единые механизмы. Приведенной выше структуре может, например, соответствовать кинематическая схема, представленная на рис.2.

Аналогичная машина такого же назначения и соответствующей производительности в принципе может иметь структурную схему, представленную на рис.3.

Автомат, представленный на рис.3, работает следующим образом. СУ выдает команды на приводы 1...5, которые осуществляют перемещение в пространстве рабочих органов 1...5. При этом СУ осуществляет согласование траекторий в пространстве и по времени. Основной особенностью автомата здесь является наличие явно выделенной системы управления и приводов каждого рабочего органа. В общем случае в состав автомат могут включаться датчики, которые обеспечивают СУ соответствующей информацией, необходимой для выработки обоснованных команд. Датчики обычно устанавливаются перед рабочим органом или после него (датчики положения, акселерометры, датчики угловых скоростей, силы, давления, температуры и т.п.). Иногда датчики располагаются внутри привода (на рис.3 канал передачи информации показан пунктиром) и обеспечивают СУ дополнительной информацией (величина тока, давления в цилиндре, скорости изменения тока и т.п.), которая используется для повышения качества управления. Более подробно такие связи рассматриваются в специальных курсах.. Согласно структуре (рис.3) могут быть построены самые разные, принципиально отличающиеся друг от друга автоматы. Основным признаком для их классификации является тип СУ. В общем случае классификация систем управления по принципу действия представлена на рис.4.

Цикловые системы могут быть замкнуты или разомкнуты. Автомат, структура и кинематическая схема которого представлены соответственно на рис.1 и рис.2, имеет разомкнутую систему управления. Такие машины часто называют «механическими дураками», потому что они работают до тех пор, пока вращается распределительный вал. СУ не контролирует параметры технологического процесса и в случае разрегулирования отдельных механизмов автомат продолжает выпускать продукцию, даже если это брак. Иногда в оборудовании могут присутствовать один или несколько приводов без обратных связей (см. привод 3 на рис.3). На рис.5 представлена кинематическая схема автомата с разомкнутой цикловой системой управления и раздельными приводами. Автоматом, имеющим такую схему, можно управлять только по времени (обеспечивать согласованные начала перемещений рабочих органов во времени) с помощью перепрограммируемого контроллера, командоаппарата с распределительным кулачковым валом, логической схемы, реализованной на любой элементной базе (пневмоэлементы, реле, микросхемы и т.д.). Основным недостатком управления по времени является вынужденное завышение цикловых параметров машины и, следовательно, снижение производительности. Действительно, создавая алгоритм временного управления, приходиться учитывать возможную нестабильность работы приводов по времени срабатывания, которое не контролируется, путем завышения временных интервалов между подачей управляющих команд. В противном случае может иметь место столкновение рабочих органов, например, из-за случайного увеличения времени хода одного цилиндра и уменьшения времени хода другого цилиндра.

В тех случаях, когда необходимо контролировать начальные и конечные положения рабочих органов (для того, например, чтобы исключить их столкновения), применяют цикловые СУ с обратными связями по положению. На рис.6 представлена кинематическая схема автомата с такой системой управления. Опорные сигналы для синхронизации срабатываний рабочих органов 1...5 поступают с датчиков положения 7...16. В отличии от автомата со структурой и кинематической схемой, представленных на рис.1 и 2, данная машина имеет менее стабильный цикл. В первом случае все цикловые параметры (времена рабочих и холостых ходов) определяются исключительно частотой вращения распределительного вала, а во втором (рис.4 и 6) - они зависят от времени срабатывания каждого цилиндра (является функцией состояния цилиндра и текущих параметров, характеризующих технологический процесс). Однако, эта схема в сравнении со схемой, представленной на рис.5, позволяет повысить производительность машины за счет исключения ненужных временных интервалов между подачей команд управления.

Все приведенные выше кинематические схемы соответствуют цикловым СУ. В том случае, когда хотя бы один из приводов автомата имеет позиционное, контурное или адаптивное управление, то принято называть его СУ соответственно позиционной, контурной или адаптивной.

На рис.7 представлен фрагмент кинематической схемы поворотного стола автомата с позиционной СУ. Привод поворотного стола РО осуществляется электромагнитом, состоящим из корпуса 1, в котором расположены обмотка 2 и подвижный якорь 3. Возврат якоря обеспечивается пружиной, а ограничение хода - упорами 5. На якоре установлен толкатель 6, который посредством ролика 7 , рычага 8 и вала I связан с поворотным столом РО. Рычаг 8 связан с неподвижным корпусом пружиной 9. Подвижный элемент потенциометрического датчика положения 10 жестко связан с якорем.

При подаче напряжения на обмотку 2 якорь сжимает пружину и, уменьшая зазор магнитопровода, перемещает РО посредством механизма прямолинейной кулисы, состоящей из ролика 7 и кулисы 8. Пружина 9 обеспечивает силовое замыкание ролика и кулисы. Датчик положения обеспечивает СУ информацией о текущих координатах РО.



СУ увеличивает ток в обмотке до тех пор, пока якорь, а, следовательно, и жестко связанный с ним РО, не достигнет заданной координаты, после чего сила пружины уравновесится силой электромагнитной тяги. Структура СУ такого привода может иметь, например, вид, как показано на рис.8.

СУ работает следующим образом. Устройство считывания программ выдает на вход преобразователя координат переменную х 0 , выраженную например в двоичном коде и соответствующую требуемой координате якоря двигателя. С выхода преобразователей координат, один из которых является датчиком обратной связи, напряжения U и U 0 поступают на устройство сравнения, вырабатывающее сигнал ошибки DU, пропорциональный разности напряжений на его входах. Сигнал ошибки подается на вход усилителя мощности, который в зависимости от знака и величины DU выдает ток I на обмотку электромагнита. Если величина ошибки становится равной нулю, то ток стабилизируется на соответствующем уровне. Как только выходное звено по той или иной причине смещается от заданного положения, величина тока начинает меняться таким образом, чтобы вернуть его в исходное положение. Таким образом, если СУ последовательно задает приводу конечное множество М записанных на программоносителе координат, то привод будет иметь М точек позиционирования. Цикловые СУ обычно имеют две точки позиционирования по каждой координате (для каждого привода). В первых позиционных системах количество координат ограничивалось числом потенциометров, каждый из которых служил для запоминания определенной координаты. Современные контроллеры позволяют задавать, хранить и выдавать в двоичном коде практически неограниченное число точек позиционирования.

На рис.8 представлена кинематическая схема типового электромеханического привода с контурной СУ. Такие приводы широко применяются в станках с числовым программным управлением. В качестве датчиков обратной связи используются тахогенератор (датчик угловой скорости) 6 и индуктосин (датчик линейных перемещений) 7. Очевидно, что механизмом, представленным на рис. 8, может управлять позиционная система (см. рис.7).

Таким образом, по кинематической схеме невозможно отличить контурную и позиционную СУ. Дело в том, что в контурной СУ программирующее устройство запоминает и выдает не набор координат, а непрерывную функцию. Таким образом, контурная система - это по сути позиционная система с бесконечным числом точек позиционирования и управляемым временем перехода РО из одной точки в другую. В позиционных и контурных СУ имеется элемент адаптации, т.е. они могут обеспечить ход РО в заданную точку или его движение по заданному закону при различных реакциях на него со стороны окружающей среды.

Однако, на практике адаптивными СУ принято считать такие системы, которые в зависимости от текущей реакции окружающей среды могут менять алгоритм работы машины.

На практике при проектировании автомата или автоматической линии бывает чрезвычайно важно на стадии эскизного проектирования выбрать приводы механизмов и СУ. Эта задача является многокритериальной. Обычно выбор приводов и СУ осуществляют по следующим критериям:

n стоимость;

n надежность;

n ремонтопригодность;

n конструктивная и технологическая преемственность;

n пожаро- и взрывобезопасность;

n уровень рабочего шума;

n устойчивость к электромагнитным помехам (относится к СУ);

n устойчивость к жестким излучениям (относится к СУ);

n массогабаритные характеристики.

Все приводы и СУ можно классифицировать по типу используемой энергии. В приводах современных технологических машин обычно используются: электрическая энергия (электромеханические приводы), энергия сжатого воздуха (пневмоприводы), энергия потока жидкости (гидроприводы), энергия разрежения (вакуумные приводы), приводы с двигателями внутреннего сгорания. Иногда в машинах применяют комбинированные приводы. Например: электропневматический, пневмогидравлический, электрогидравлический и проч. Краткие сравнительные характеристики двигателей приводов приведены в таблице 1. Кроме того, при выборе привода следует учитывать передаточный механизм и его характеристики. Так, сам двигатель может быть дешевым, а передаточный механизм -дорогим, надежность двигателя может быть большой, а надежность перадаточного механизма - маленькой и проч.

Важнейшим аспектом выбора типа привода является преемственность. Так, например, если во вновь проектируемом автомате хотя бы один из приводов гидравлический, то стоит подумать о возможности применения гидравлики и для остальных рабочих органов. Если гидравлика применяется впервые, то надо помнить, что она потребует установки рядом с оборудованием весьма дорогой и большой по массогабаритным параметрам гидростанции. Точно также надо поступать и в отношении пневматики. Порой бывает неразумно прокладывать пневмомагистраль или даже покупать компрессор ради одного пневмопривода в одной машине. Как правило, при проектировании оборудования нужно стремиться к применению однотипных приводов. В этом случае, кроме перечисленного выше, существенно упрощается техническое обслуживание и ремонт. Более глубокое сравнение различных типов приводов и СУ можно произвести только после изучения специальных дисциплин.

Вопросы для самоконтроля

1. Что называют средством автоматизации технологического процесса применительно к производству?

2. Перечислите основные составные части автоматической производственной машины.

3. Что выполняло функции программоносителя в первых цикловых автоматах?

4. В чем заключается эволюция автоматических производственных машин?

5. Перечислите типы СУ, применяемых в технологическом оборудовании.

6. Что такое замкнутая и разомкнутая СУ?

7. В чем заключаются основные особенности цикловой СУ?

8. Чем различаются позиционные и контурные СУ?

9. Какие СУ называются адаптивными?

10. Из каких основных элементов состоит привод машины?

11. По каким признакам классифицируются приводы машин?

12. Перечислите основные типы приводов, применяемых в технологических машинах.

13. Перечислите критерии сравнения приводов и СУ.

14. Приведите пример замкнутого циклового привода.

Похожие статьи