Анализатор состоит из рецептора проводника и. Анализаторы человека

04.03.2020

Анализатор состоит из трех анатомически и функционально связанных между собой элементов: 1) рецептора – периферического отдела 2) проводникового отдела 3) коркового или центрального отдела.

Рецепторы воспринимают внешние воздействия и изменения внутренней среды организма. В рецепторах происходят сложный процесс первичного анализа раздражителей и преобразование сигналов внешнего и внутреннего мира в нервные импульсы.

Проводниковый отдел анализатора включает чувствительные (афферентные) нейроны и проводящие пути от рецептора до коры полушарий большого мозга. На своем пути к корковому отделу анализатора импульсы проходят через ряд центров спинного мозга, ствола головного мозга и таламуса. В каждом центре осуществляется переработка сигналов, их интеграция с другими типами информации.

Корковый отдел анализатора представляет собой участки коры БП, воспринимающие информацию от соответствующих рецепторов. Афферентные волокна, несущие сигналы от различных рецепторов, приходят в определенные участки коры. Павловым эти участки были названы корковым ядром анализатора. В коре происходит высший анализ информации.

Орган слуха воспринимает звуковые сигналы и состоит из трех частей: наружного, среднего и внутреннего уха. Среднее и внутреннее ухо расположены в пирамиде височной кости, наружное – вне ее.

К наружному уху относят ушную раковину и наружный слуховой проход. Ушная раковина улавливает звуки и направляет их в наружный слуховой проход.

В глубине наружного слухового прохода, на границе его со средним ухом находится барабанная перепонка, покрытая снаружи истонченной кожей. Изнутри, со стороны полости среднего уха барабанная перепонка покрыта слизистой оболочкой. Барабанная перепонка имеет округлоовальную форму, диаметр ее составляет от 10 мм до 8, 5 мм, толщина – 0, 1 мм. Она расположена под углом к оси наружного слухового прохода и немного втянута в сторону среднего уха.

Среднее ухо располагается внутри каменистой части височной кости и состоит из барабанной полости, слуховой трубы, соединяющей слуховую полость с глоткой, сосцевидного отростка с его костными ячейками.

Слуховая, или евстахиева, труба представляет собой канал длиной (у взрослых) 3, 5 см, соединяющий барабанную полость с носоглоткой. Барабанное устье евстахиевой трубы расположено в передней стенке барабанной полости, а носоглоточное - в боковой стенке носоглотки.

Внутреннее ухо, или ушной лабиринт, представляет собой систему каналов и полостей в толще височной кости. Эта система состоит из преддверия, полукружных каналов и улитки. Различают костный и перепончатый лабиринты, причем костный лабиринт является как бы футляром для перепончатого.

Перепончатый лабиринт наполнен особой жидкостью - эндолимфой, а пространство между перепончатым и костным лабиринтами также заполнено жидкостью - перилимфой

В улитковом ходе расположен кортиев (спиральный) орган. Основной его функциональной частью являются слуховые клетки, заканчивающиеся чувствительными волосками и потому называемые также волосковыми клетками. Эти клетки расположены в несколько рядов и представляют собой специфический концевой аппарат слухового анализатора, или слуховой рецептор.

Проводниковый отдел слухового анализатора Слуховой нерв выходит из внутреннего уха через внутренний слуховой проход в полость черепа и проникает в основание мозга. Отсюда волокна слухового нерва направляются к слуховым ядрам продолговатого мозга, где находится тело первого нейрона. От слуховых ядер в продолговатом мозге берут начало отростки второго нейрона.

Часть нервных волокон от ядер идет по одноименной стороне, а большая часть их переходит на противоположную сторону. Далее волокна доходят до оливы про долговатого мозга, откуда берут начало отростки третьего нейрона. Волокна третьего нейрона заканчиваются в подкорковых слуховых центрах - заднем двухолмии и внутреннем коленчатом теле. Отсюда начинаются отростки последнего, четвертого, нейрона слухового пути, находящегося в корковом конце слухового анализатора - в височной доле мозга.

Центральный отдел слухового анализатора. Центральный конец слухового анализатора расположен в коре верхнего отдела височной доли каждого из полушарий головного мозга (в слуховой области коры).

Вестибулярный аппарат Преддверие составляет центральную часть лабиринта и состоит из двух перепончатых мешочков: переднего (круглого) и заднего (овального). Передний мешочек сообщается с улиткой, а задний - с полукружными каналами. Полукружных каналов три: верхний, задний и наружный. Они расположены в трех взаимно перпендикулярных плоскостях. Один из концов каждого канала гладкий, а другой имеет расширение - ампулу. Преддверие и полукружные каналы образуют вестибулярный аппарат и являются периферическим отделом пространственного анализатора, или органа равновесия.

Анализаторы человека – виды, характеристика, функции

Анализаторы человека помогают в получении и обработке информации, которую органы чувств получают из окружающей или внутренней среды.

Как человек воспринимает окружающий мир – поступающую информацию, запахи, цвета, вкусы? Все это обеспечивается анализаторами человека, которые расположены по всему телу. Они бывают разных видов и обладают различной характеристикой. Несмотря на различия между собой в строении, они выполняют одну общую функцию – воспринимать и перерабатывать информацию, которая затем передается человеку в понятном ему виде.

Анализаторы являются всего лишь аппаратами, через которые человек воспринимает окружающий мир. Они работают без сознательного участия человека, порой поддаются его контролю. В зависимости от полученной информации, человек понимает, что он видит, кушает, нюхает, в какой среде находится и т. д.

Анализаторы человека

Анализаторами человека называют нервные образования, обеспечивающие прием и переработку полученной из внутренней среды или внешнего мира информации. Вместе с , которые выполняют конкретные функции, они образуют сенсорную систему. Информация воспринимается нервными окончаниями, которые расположены в сенсорных органах, затем проходит по нервной системе прямо в мозг, где обрабатывается.

Анализаторы человека делятся на:

  1. Внешние – зрительные, тактильные, обонятельные, звуковые, вкусовые.
  2. Внутренние – воспринимают информацию о состоянии внутренних органов.

Анализатор разделяется на три отдела:

  1. Воспринимающий – орган чувств, рецептор, который воспринимает информацию.
  2. Промежуточный – проводящий информацию далее по нервам в головной мозг.
  3. Центральный – нервные клетки в коре больших полушарий, где поступившая информация обрабатывается.

Периферический (воспринимающий) отдел представлен органами чувств, свободными нервными окончаниями, рецепторами, которые воспринимают определенный вид энергии. Они переводят раздражение в нервный импульс. В корковой (центральной) зоне импульс перерабатывается в ощущение, которое понятно человеку. Это позволяет ему быстро и адекватно реагировать на изменения, которые происходят в окружающей среде.


Если все анализаторы человека работают на 100%, тогда он адекватно и вовремя воспринимает всю поступающую информацию. Однако проблемы возникают тогда, когда ухудшается восприимчивость анализаторов, а также теряется проводимость импульсов по нервным волокнам. Сайт психологической помощи сайт указывает на важность слежения за своими органами чувств и их состоянием, поскольку это влияет на восприимчивость человека и его полное понимание того, что происходит в окружающем мире и внутри его тела.

Если анализаторы повреждены или не функционируют, то у человека возникают проблемы. К примеру, индивид, который не чувствует боли, может не заметить, что он серьезно поранился, его укусило ядовитое насекомое и т. д. Отсутствие моментальной реакции может привести к гибели.

Виды анализаторов человека

Человеческий организм полон анализаторов, которые отвечают за прием той или иной информации. Вот почему сенсорные анализаторы человека подразделены на виды. Это зависит от характера ощущений, чувствительности рецепторов, назначения, скорости , природы раздражителя и т. д.


Внешние анализаторы направлены на восприятие всего, что происходит во внешнем мире (вне тела). Каждый человек субъективно воспринимает то, что находится во внешнем мире. Так, дальтоники не могут знать о том, что они не различают некоторых цветов, пока другие люди им не скажут о том, что цвет конкретного предмета другой.

Внешние анализаторы делятся на такие виды:

  1. Зрительный.
  2. Вкусовой.
  3. Слуховой.
  4. Обонятельный.
  5. Осязательный.
  6. Температурный.

Внутренние анализаторы занимаются сохранением здорового состояния организма внутри. Когда состояние отдельного органа изменяется, человек понимает это через соответствующие неприятные ощущения. Ежедневно человек испытывает ощущения, согласующиеся с естественными потребностями организма: голод, жажда, усталость и т. д. Это побуждает человека на совершение определенного действия, что позволяет привести организм в равновесие. В здоровом состоянии человек обычно ничего не ощущает.

Отдельно выделяют кинестетические (двигательные) анализаторы и вестибулярный аппарат, которые отвечают за положение тела в пространстве и его передвижение.


Болевые рецепторы занимаются оповещением человека о том, что произошли конкретные изменения внутри организма или на теле. Так, человек ощущает, что поранился или ударился.

Нарушение работы анализатора приводит к уменьшению восприимчивости окружающего мира или внутреннего состояния. Обычно проблемы возникают с внешними анализаторами. Однако нарушение вестибулярного аппарата или повреждение болевых рецепторов тоже вызывает определенные трудности в восприятии.

Характеристика анализаторов человека

Первостепенной характеристикой анализаторов человека является его чувствительность. Существуют высокий и низкий пороги чувствительности. У каждого человека он свой. Обычное надавливание на руку может вызывать боль у одного и легкое покалывание у другого, что полностью зависит от чувствительного порога.

Чувствительность бывает абсолютной и дифференцированной. Абсолютный порог указывает на минимальную силу раздражения, который воспринимается организмом. Дифференцированный порог помогает в узнавании минимальных различий между раздражителями.


Латентный период – это промежуток времени от начала воздействия раздражителя до появления первых ощущений.

Зрительный анализатор участвует в восприятии окружающего мира в образном виде. Этими анализаторами являются глаза, где меняется размер зрачка, хрусталика, что и позволяет видеть предметы при любом освещении и расстоянии. Важными характеристиками данного анализатора являются:

  1. Изменение хрусталика, который позволяет видеть предметы как вблизи, так и в дали.
  2. Световая адаптация – привыкание глаза к освещению (занимает 2-10 секунд).
  3. Острота – разделение предметов в пространстве.
  4. Инерция – стробоскопический эффект, который создает иллюзию непрерывности движения.

Расстройство зрительного анализатора приводит к различным заболеваниям:

  • Дальтонизм – неспособность воспринимать красный и зеленый цвета, иногда желтый и фиолетовый.
  • Цветовая слепота – восприятие мира в сером цвете.
  • Гемералопия – неспособность видеть в сумерках.

Тактильный анализатор характеризуется точками, которые воспринимают различное воздействие окружающего мира: боль, тепло, холод, толчки и т. д. Главной особенностью является кожного покрова к внешней среде. Если раздражитель постоянно воздействует на кожу, тогда анализатор снижает собственную чувствительность на него, то есть привыкает.

Обонятельным анализатором является нос, который покрыт волосками, выполняющими защитную функцию. При респираторных заболеваниях прослеживается невосприимчивость запахов, которые поступают в нос.

Вкусовой анализатор представлен нервными клетками, расположенными на языке, которые воспринимают вкусы: соленый, сладкий, горький и кислый. Также отмечается их комбинация. У каждого человека прослеживается своя восприимчивость тех или иных вкусов. Вот почему у всех людей разные вкусы, которые могут отличаться до 20%.

Функции анализаторов человека

Основной функцией анализаторов человека является восприятие раздражителей и информации, передача в головной мозг, чтобы возникли конкретные ощущения, побуждающие к соответствующим действиям. Функция – сообщить, чтобы человек автоматически или осознанно принял решение, что ему делать дальше или как устранить возникшую проблему.

У каждого анализатора своя функция. В совокупности все анализаторы создают общее представление о том, что происходит во внешнем мире или внутри организма.


Зрительный анализатор помогает воспринимать до 90% всей информации окружающего мира. Она передается картинками, которые помогают быстро сориентироваться во всех звуках, запахах и прочих раздражителях.

Тактильные анализаторы выполняют оборонительно-защитную функцию. На кожу попадают различные инородные тела. Их различное воздействие на кожу заставляет человека быстро избавляться от того, что может нанести вред целостности. Также кожей регулируется температура тела за счет оповещения о том, в какой среде человек оказался.

Органы нюха воспринимают запахи, а волоски выполняют защитную функцию по избавлению воздуха от инородных тел, находящихся в воздухе. Также человек через нос воспринимает окружающую среду по запаху, контролируя, куда идти.

Вкусовые анализаторы помогают в распознавании вкусов различных предметов, которые попадают в рот. Если по вкусу что-то является съедобным, человек кушает. Если что-то не соответствует вкусовым рецепторам, человек это выплевывает.

Соответствующее положение тела определяется мышцами, которые посылают сигналы и напрягаются при движении.

Функцией болевого анализатора является защита организма от причиняющих боль раздражителей. Здесь человек либо рефлекторно, либо осознанно начинает защищаться. Например, отдергивание руки от горячего чайника является рефлекторной реакцией.

Слуховые анализаторы выполняют две функции: восприятие звуков, которые могут оповещать об опасности, и регуляция равновесия тела в пространстве. Заболевание органов слуха могут привести к нарушению вестибулярного аппарата или искажению звуков.

Каждый орган направлен на восприятие определенной энергии. Если все рецепторы, органы и нервные окончания здоровы, тогда человек воспринимает себя и окружающий мир во всей красе одновременно.

Прогноз

Если человек утрачивает функциональность своих анализаторов, тогда прогноз его жизни в некоторой степени ухудшается. Возникает необходимость в восстановлении их функциональности или замещении, чтобы компенсировать недостаток. Если человек теряет зрение, тогда ему приходится воспринимать мир через другие органы чувств, а «его глазами» становятся другие люди или собака-поводырь.

Врачи отмечают необходимость соблюдения гигиены и проведения профилактики лечения всех своих органов чувств. К примеру, необходимо чистить уши, не кушать то, что не считается едой, беречь себя от воздействия химических веществ и т. д. Во внешнем мире есть множество раздражителей, которые могут причинить вред организму. Человек обязан научиться жить так, чтобы не повреждать свои сенсорные анализаторы.

Итогом потери здоровья, когда внутренние анализаторы сигнализируют о боли, что говорит о болезненном состоянии конкретного органа, может стать смерть. Таким образом, работоспособность всех анализаторов человека помогает в сохранении жизни. Повреждение органов чувств или игнорирование их сигналов может значительно повлиять на продолжительность жизни.

К примеру, повреждение до 30-50% кожного покрова может привести к смерти человека. Повреждение органов слуха не приведет к смерти, однако снизит качество жизни, когда человек не сможет полноценно познавать весь мир.

За некоторыми анализаторами необходимо следить, периодически проходить проверку их работоспособности и проводить профилактику. Существуют определенные меры, которые помогают в сохранении зрения, слуха, тактильной чувствительности. Многое зависит еще и от генов, которые передаются детям от родителей. Именно они определяют, насколько острыми по чувствительности будут анализаторы, а также их порог восприятия.

Основная функция которых состоит в восприятии информации и формировании соответствующих реакций. При этом информация может идти как из окружающей среды, так и изнутри самого организма.

Общее строение анализатора . Само понятие «анализатор» появилось в науке благодаря известному ученому И. Павлову. Именно он впервые определил их как отдельную систему органов и выделил общую структуру.

Несмотря на все разнообразие строение анализатора, как правило, довольно типичное. Он состоит из рецепторного отдела, проводящей части и центрального отдела.

  • Рецепторная, или периферическая часть анализатора представляет собой рецептор, который приспособлен к восприятию и первичной обработке определенной информации. Например, ушной завиток реагирует на звуковую волну, глаза — на свет, кожные рецепторы — на давление. В рецепторах информация о воздействии раздражителя перерабатывается в нервный электрический импульс.
  • Проводниковые части — отделы анализатора, которые представляют собой нервные пути и окончания, которые идут к подкорковым структурам головного мозга. Примером может служить зрительный, а также слуховой нерв.
  • Центральная часть анализатора — это зона коры головного мозга, на которую проектируется полученная информация. Здесь, в сером веществе, осуществляется окончательная переработка информации и выбор наиболее подходящей реакции на раздражитель. Например, если прижать палец к чему-то горячему, то терморецепторы кожи проведут сигнал к головному мозгу, откуда поступит команда одернуть руку.

Анализаторы человека и их классификация . В физиологии принято разделять все анализаторы на внешние и внутренние. Внешние анализаторы человека реагируют на те раздражители, которые приходят из внешней среды. Рассмотрим их более подробно.

  • Зрительный анализатор . Рецепторная часть данной структуры представлена глазами. Человеческий глаз состоит из трех оболочек — белковой, кровеносной и нервной. Количество света, которое поступает на сетчатку, регулируется зрачком, который способен расширятся и суживаться. Луч света переламывается на роговице, хрусталике и в Таким образом, изображение попадает на сетчатку, которая содержит множество нервных рецепторов — палочек и колбочек. Благодаря химическим реакциям здесь формируется электрический импульс, которые следует по и проектируется в затылочных долях коры головного мозга.
  • Слуховой анализатор . Рецептором здесь является ухо. Внешняя его часть собирает звук, средняя представляет собой путь его прохождения. Вибрация продвигается по отделам анализатора до тех пор, пока не достигнет завитка. Здесь колебания вызывают движение отолитов, которое и формирует нервный импульс. Сигнал идет по слуховому нерву к височным долям головного мозга.
  • Обонятельный анализатор . Внутренняя оболочка носа покрыта так называемым обонятельным эпителием, структуры которого реагируют на молекулы запаха, создавая нервные импульсы.
  • Вкусовые анализаторы человека . Они представлены вкусовыми сосочками — скоплением чувствительных химических рецепторов, которые реагируют на определенные
  • Тактильные, болевые, температурные анализаторы человека — представленные соответствующими рецепторами, расположенными в разных слоях кожи.

Если говорить о внутренних анализаторах человека, то это те структуры, которые реагируют на изменения внутри организма. Например, в мышечной ткани есть специфические рецепторы, которые реагируют на давление и другие показатели, которые изменяются внутри тела.

Еще один яркий пример — это который реагирует на положение всего тела и его частей относительно пространства.

Стоит отметить, что анализаторы человека имеют собственные характеристика, а эффективность их работы зависит от возраста, а иногда и от пола. Например, женщины различают больше оттенков и ароматов, чем мужчины. Представители же сильной половины, имеют больше

орган ощущения (зрительный, слуховой а. и т.д.). А. состоит из периферического рецептора, проводящих нервных путей, центрального участка головного мозга, отвечающего за деятельность данного а.

АНАЛИЗАТОР

понятие, предложенное И. П. Павловым. Обозначает совокупность афферентных и эфферентных нервных структур, участвующих в восприятии, переработке и реагировании на раздражители.

Анализатор

1. Структуры периферической и центральной нервной системы, осуществляющие восприятие и анализ информации о внешней и внутренней среде. Каждый анализатор обеспечивает определенный вид ощущений и переработку (восприятие) соответствующей информации. Вид чувствительности, обеспечиваемый данным анализатором, определяет его название, например анализатор зрительный, болевой чувствительности и др. Каждый анализатор имеет периферический, проводниковый и корковый отделы. Понятие об анализаторе разработал отечественный физиолог И.П. Павлов (1849–1936).

2. Общее название приборов для автоматического анализа, качественных и количественных характеристик тканей организма и происходящих в нем физиологических и биохимических процессов.

АНАЛИЗАТОР

Функциональное образование ЦНС, осуществляющее восприятие и анализ информации о явлениях, происходящих во внешней среде и самом организме. Деятельность А. осуществляется определенными мозговыми структурами. Понятие введено И.П. Павловым, согласно концепции которого А. состоит из трех звеньев: рецептора; проводящих импульсы от рецептора к центру афферентных путей и обратных, эфферентных, по которым импульсы идут из центров на периферию, к нижним уровням А.; корковых проекционных зон. Физиологические механизмы деятельности анализаторов изучались П.К. Анохиным, создавшим (см.) концепцию функциональной системы.

Различают А.: болевой, вестибулярный, вкусовой, двигательный, зрительный, интероцептивный, кожный, обонятельный, проприоцептивный, речедвигатеяьный, слуховой.

АНАЛИЗАТОР

от греч. analysis - разложение, расчленение) - термин, введенный И. П. Павловым, для обозначения целостного нервного механизма, осуществляющего прием и анализ сенсорной информации определенной модальности. Син. сенсорная система. Выделяют зрительный (см. Зрение), слуховой, обонятельный, вкусовой, кожный А., анализаторы внутренних органов и двигательный (кинестетический) А., осуществляющий анализ и интеграцию проприоцептивной, вестибулярной и др. информации о движениях тела и его частей.

А. состоит из 3 отделов: 1) рецепторного, преобразующего энергию раздражения в процесс нервного возбуждения; 2) проводникового (афферентные нервы, проводящие пути), по которому сигналы, возникшие в рецепторах, передаются к вышележащим отделам ц. н. с.; 3) центрального, представленного подкорковыми ядрами и проекционными отделами коры больших полушарий (см. Кора головного мозга).

Анализ сенсорной информации осуществляется всеми отделами А., начиная с рецепторов и кончая корой больших полушарий. Помимо афферентных волокон и клеток, передающих восходящие импульсы, в составе проводникового отдела имеются и нисходящие волокна - эфференты. По ним проходят импульсы, регулирующие активность нижележащих уровней А. со стороны его высших отделов, а также др. мозговых структур.

Все А. связаны друг с другом двусторонними связями, а также с моторными и др. областями мозга. Согласно концепции А. Р. Лурия, система А. (или, что точнее, система центральных отделов А.) образует 2-й из 3 блоков мозга. Иногда в обобщенную структуру А. (Е. Н. Соколов) включается активирующая система мозга (ретикулярная формация), которую Лурия рассматривает в виде отдельного (первого) блока мозга. (Д. А. Фарбер.)

Анализатор

Словообразование. Происходит от греч. analysis - разложение, расчленение.

Специфика. Отвечает за прием и анализ сенсорной информации какой-либо одной модальности.

Структура. В анализаторе выделяют:

Воспринимающий орган или рецептор, предназначенный для преобразование энергии раздражения в процесс нервного возбуждения;

Проводник, состоящий из восходящих (афферентных) нервов и проводящих путей, по которому импульсы передаются к вышележащим отделам центральной нервной системы;

Центральный отдел, состоящий из релейных подкорковых ядер и проекционных отделов коры больших полушарий;

Нисходящие волокна (эфферентные), по которым осуществляется регуляция деятельности нижних уровней анализатора со стороны высших, в особенности корковых, отделов.

Зрительный анализатор,

Слуховой,

Обонятельный,

Вкусовой,

Вестибулярный,

Двигательный,

Анализаторы внутренних органов.

АНАЛИЗАТОР

анализ от греч. analysis - разложение, расчленение) - анатомо-физиологическая система, обеспечивающая восприятие, анализ и синтез раздражителей, действующих на человека. Различают зрительный, слуховой, кожный, обонятельный, вкусовой анализаторы; А. внутренних органов и двигательный А., осуществляющий оценку состояния мышц и сухожилий. Любой А. состоит из трех частей: 1) воспринимающего прибора (рецептора), производящего преобразование энергии раздражителя в процесс нервного возбуждения; 2) проводникового отдела, передающего энергию нервного возбуждения в ц. н. с. и обратно; 3) центрального отдела, представленного определенными участками подкорки и коры головного мозга, куда адресуются восходящие сенсорные импульсации. А. обеспечивает работу органов чувств (зрения, слуха, осязания и др.). Изучение работы А. имеет большое практическое значение. Напр., в инженерной психологии при разработке пультов управления учет возможностей различных А. позволяет определить цвет, частоту, силу сигнала, оптимальные размеры и форму шкал, экранов, приборов, их расположение на панели.

Анализатор

греч. analysis - разложение, расчленение) - орган чувствительности, который образуют а) периферические рецепторы, воспринимающие конфигурации энергии внутренних и внешних стимулов; б) проводящие центростремительные (или афферентные) нервные пути, в) нервные центры в головном мозге, обрабатыващие получаемую сенсорную информацию по существующим в них программах; г) центробежные (или эффекторные) нервные пути, проводящие нервные импульсы в сторону периферических органов чувств для регуляции их функций, и, наконец, д) периферические рецепторы органов чувств, воспринимающие команды из центра. Различают следующие виды анализаторов: 1. зрительный, 2. слуховой, 3. обонятельный, 4. вкусовой, 5. болевой, 6. вестибулярный, 7. мышечно-суставной, 8. давления и веса, 9. вибрации, 10. осязательный, 11. температурный, 12. интероцептивный, 12. зуд и, предположительно, 13. щекотка. В рамках каждого вида чувствительности наблюдаются по меньшей мере три основных вида расстройства: 1. сенсорная гипестезия (в разных ее вариатнтах), 2. сенсорная гиперестезия (в разных ее вариантах), 3. сенсорная дизестезия (в виде значительного числа различных ее проявлений).. Помимо того, могут возникать мнимые патологические ощущения, мало или вовсе не связанные с сенсорной стимуляцией (например, сенестопатии, фантомные боли).

анализатор

орган, обеспечивающий образование ощущений и и восприятий. А. состоит из трех частей: периферического рецептора, проводящих путей и центрального участка коры головного мозга. Различают А. зрительный, слуховой, обонятельный, вкусовой, осязательный, термический, двигательный.

Свет состоит из частиц, называемых фотонами, каждую из которых можно рассматривать как пакет электромагнитных волн. Будет ли луч электромагнитной энергии именно светом, а не рентгеновскими лучами или радиоволнами, определяется длиной волны - расстоянием от одного гребня волны до следующего: в случае света это расстояние составляет приблизительно 0,0000001 (10-7) метра, или 0,0005 миллиметра, или 0,5 микрометра, или 500 нанометров (нм).

Свет - это то, что мы можем видеть. Наши глаза могут воспринимать электромагнитные волны длиной от 400 до 700 нм. Обычно попадающий в наши глаза свет состоит из сравнительно однородной смеси лучей с различными длинами волн; такую смесь называют белым светом (хотя это весьма нестрогое понятие). Для оценки волнового состава световых лучей измеряют световую энергию, заключенную в каждом из последовательных небольших интервалов, например от 400 до 410 нм, от 410 до 420 нм и т. д., после чего рисуют график распределения энергии по длинам волн. Для света, приходящего от солнца, этот график похож на левую кривую на рис. 8.1. Это кривая без резких подъемов и спадов с пологим максимумом в области 600 нм. Такая кривая типична для излучения раскаленного объекта. Положение максимума зависит от температуры источника: для Солнца это будет область около 600 нм, а для звезды более горячей, чем наше Солнце, максимум сдвинется к более коротким волнам - к голубому концу спектра, т. е. на нашем графике - влево. (Представление художников о том, что красные, оранжевые и желтые цвета - теплые, а синие и зеленые - холодные, связано только с нашими эмоциями и ассоциациями и не имеет никакого отношения к спектральному составу света от раскаленного тела, зависящему от его температуры, - к тому, что физики называют цветовой температурой.)

Если мы будем каким-то способом фильтровать белый свет, удаляя все, кроме узкой спектральной полосы, то получим свет, который называют монохроматическим (см. график на рис. 8.1 справа).

Зрение основано на обнаружении электромагнитного излучения. Электромагнитный спектр имеет широкий диапазон, и видимая часть составляет лишь очень малую долю.

Энергия электромагнитного излучения обратно пропорциональна длине волны. Длинные волны несут слишком мало энергии, чтобы активировать фотохимические реакции, лежащие в основе фоторецепции. Энергия коротких волн так велика, что они повреждают живую ткань.

Рис. 8.1. Слева: энергия света (например, солнечного) распределена в широком диапазоне длин волн - примерно от 400 до 700 нанометров. Слабо выраженный пик определяется температурой источника: чем горячее источник, тем больше смещение пика к синему (коротковолновому) концу. Справа: монохроматический свет - это свет, энергия которого сосредоточена в основном в области какой-то одной длины волны. Его можно создать при помощи разнообразных фильтров, лазера или спектроскопа с призмой или дифракционной решеткой.

Большая часть коротковолнового излучения Солнца поглощается озоновым слоем атмосферы (в узком участке спектра - от 250 до 270 нм): если бы этого не было, жизнь на Земле вряд ли могла возникнуть. Все фотобиологиче- ские реакции ограничены узким участком спектра между двумя этими областями.

Большая часть информации, получаемая водителем от дороги, среды движения и автомобиля, представляет собой условные сигналы. Дорожные знаки, разметка, показания контрольных приборов являются условными сигналами, несущими информацию, необходимую для выполнения целенаправленных управляющих действий или их прекращения. Нервная система в процессе всей деятельности непрерывно расчленяет сложные раздражители, действующие на наши органы чувств, на более простые составные элементы (анализ) и тут же объединяет их соответствующие обстановке системы (синтез).

Любой рефлекторный акт связан с определённой областью коры головного мозга. Все процессы, протекающие в головном мозге, материальны (в их основе лежат материальные процессы, протекающие в определённых частях нервной системы).

Всю информацию, необходимую для управления автомобилем, водитель получает с помощью анализаторов. Каждый анализатор состоит из трех отделов. Первый отдел - наружный, воспринимающий аппарат, в котором происходит превращение энергии воздействующего раздражителя в нервный процесс. Эти наружные анатомические образования и есть органы чувств. Второй отдел - это чувствительные нервы. Третий отдел - центр, который представляет собой специализированный участок коры головного мозга, превращающий нервные раздражения в соответствующее ощущение. Так, в зрительном анализаторе первым, наружным отделом является внутренняя оболочка глазного яблока, состоящая из светочувствительных клеток - колбочек и палочек. Раздражение этих клеток, передаваемое по зрительному нерву в центр зрительного анализатора, дает ощущение света, цвета и зрительное восприятие предметов внешнего мира. Центр зрительного анализатора находится в затылочной области головного мозга .

Кроме специфических свойств анализаторы имеют и общие свойства. Общим свойством анализатора является их высокая возбудимость, выражающаяся в возникновении очага возбуждения в коре головного мозга даже при небольшой силе раздражителя. Всем анализаторам присуща иррадиация возбуждения, при которой возбуждение из центра анализатора распространяется на соседние участки коры головного мозга. Следующей особенностью анализаторов является адаптация, т.е. способность в большом диапазоне воспринимать раздражители различной силы. Фоторецепторы - это один из видов сенсорных органов (систем), отвечающие за зрение. Именно возможностями фоторецепторов определяется оптическая ориентация.

Фоторецепторные клетки содержат пигмент (обычно это родопсин), который под действием света обесцвечивается. При этом изменяется форма молекул пигмента, причем в отличие от выцветания, с каким мы встречаемся в повседневной жизни, такой процесс обратим. Он ведет к еще не совсем понятным электрическим изменениям в рецепторной мембране.

Человеческого глаз окружен плотной оболочкой - склерой, прозрачной в передней части глаза, где она называется роговицей. Непосредственно изнутри роговица покрыта черной выстилкой - сосудистой оболочкой, которая снижает пропускающую и отражающую способность боковых частей глаза. Сосудистая оболочка выстлана изнутри светочувствительной сетчаткой. Спереди сосудистая оболочка и сетчатка отсутствуют. Здесь находится крупный хрусталик, делящий глаз на переднюю и заднюю камеры, заполненные соответственно водянистой влагой и стекловидным телом. Перед хрусталиком расположена радужка - мышечная диафрагма с отверстием, называемым зрачком. Радужка регулирует размеры зрачка и тем самым количество света, попадающее в глаз. Хрусталик окружен ресничной мышцей, которая изменяет его форму. При сокращении мышцы хрусталик становится более выпуклым, фокусируя на сетчатке изображение предметов, рассматриваемых вблизи. При расслаблении мышцы хрусталик уплощается, и в фокус попадают более отдаленные предметы.

Фоторецепторы делятся на два типа - палочки и колбочки. Палочки, более вытянутые по сравнению с колбочками, очень чувствительны к слабому освещению и обладают только одним типом фотопигмента -родопсином. Поэтому палочковое зрение бесцветное. Оно также отличается малой разрешающей способностью (остротой), поскольку много палочек соединено только с одной ганглиозной клеткой. То, что одно волокно зрительного нерва получает информацию от многих палочек, повышает чувствительность в ущерб остроте. Палочки преобладают у ночных видов, для которых важнее первое свойство.

Колбочки наиболее чувствительны к сильному освещению и обеспечивают острое зрение, так как с каждой ганглиозной клеткой связано лишь небольшое их число. Они могут быть разных типов, обладая специализированными фотопигментами, поглощающими свет в различных частях спектра. Таким образом, колбочки служат основой цветового зрения. Они наиболее чувствительны к тем длинам волн, которые сильнее всего поглощаются их фотопигментами. Зрение называют монохроматическим, если активен лишь один фотопигмент, например, в сумерках у человека, когда работают только палочки.

В 1825 г. чешский физиолог Ян Пуркинье заметил, что красные цвета кажутся ярче синих днем, но с наступлением сумерек их окраска блекнет раньше, чем у синих. Как показал в 1866 г. Щульц, это изменение спектральной чувствительности глаза, названное сдвигом Пуркинъе, объясняется переходом от колбочкового зрения к палочковому во время темповой адаптации. Это изменение чувствительности при темповой адаптации можно измерить у человека, определяя порог обнаружения едва видимого света через разные промежутки времени пребывания в темной комнате. По мере адаптации этот порог постепенно снижается.

Долю колбочкового зрения можно определить, направляя очень слабый свет на центральную ямку на сетчатке, в которой палочки отсутствуют. Долю участия в восприятии палочек определяют у «палочковых монохроматов», т. е. у редких индивидуумов, лишенных колбочек. Палочки гораздо чувствительнее к свету, чем колбочки, но содержат только один фотопигмент-родопсин, максимальная чувствительность которого лежит в синей части спектра. Поэтому синие предметы кажутся в сумерках ярче предметов других цветов. Для нескольких миллионов людей на земле нет почти никакой разницы между красным сигналом и зеленым. Это дальтоники - люди с нарушенным цветным зрением. Среди мужчин дальтоники составляют - 4 - 6%, а среди женщин 0,5%.

Раздражителем зрительного анализатора является свет, и рецептором является позитивная энергия. Зрение позволяет воспринимать цвет, форму, яркость и движение предмета. Возможности зрительного восприятия определяются следующие характеристики:

  • 1) энергетическими;
  • 2) пространственными;
  • 3) временными;
  • 4) информационными.

Энергетические характеристики зрительного анализатора определяются мощностью или интенсивностью светового тока (диапазон яркости, контраст). Яркость предмета - это величина (3

где J - сила света;

S - величина светящейся поверхности;

а - угол, под которым рассматривается поверхность.

В общем случае яркость определяется двумя составляющими:

  • 1) яркость излучения;
  • 2) яркость отражения.

Яркость излучения определяется мощностью источника света, а яркость отражения уравнением освещенностью данной поверхности.

Коэффициент отражения определяется цветом поверхности: белый-0,9; желтый - 0,75; зеленый - 0,52; синий - 0,40; коричневый-0,10; черный-0,05.

Под адаптирующей яркостью понимают ту яркость, на которую настроен в данное время зрительный анализатор.

Видимость предметов определяется также контрастностью, которая бывает:

  • - прямая (предмет темнее фона);
  • - обратная (предмет ярче фона).

Для обеспечения необходимого контраста вводится понятие порогового контраста, т.е. min разница яркости предмета и фона впервые, обнаруживаемая глазом.

Для получения оперативного порога (нормальная видимость) необходимо, чтобы фактическая разница в яркости предмета и фона была выше пороговой в 10 - 15 раз. Большое влияние на условие видимости оказывает величина внешней освещенности.

Для создания оптимальных условий зрение необходимо обеспечивать:

  • 1. Требуемую яркость;
  • 2. Контраст;
  • 3. Равномерное распределение яркости в поле зрения.

Глаз человека воспринимает электромагнитные волны в диапазоне от 380 до 760 Нм.

Самую нужную от 500 до 600 Нм (желто-зеленое излучение).

Важнейшей характеристикой глаза является относительная характеристика

S - ощущение, вызываемое источником мощности для 550 длины.

Sx - ощущение, вызывающие источником той же мощности данной х.

Кривая относительной видимости показывает, что для обеспечения одинакового зрительного ощущения необходимо, чтобы мощность синего излучения была в 16 раз, а красного в 9 раз больше мощности желто-зеленого.

Восприятие цвета в действительности водителем важно по 2 причинам:

  • 1) цвет может использоваться как один из способов кодирования информации;
  • 2) эстетическое оформление для улучшения зрительного восприятия.

Основной информационной характеристикой зрительного анализатора

является его пропускная способность (количество информации, которую он способен воспринять в единицу времени) - воронка.

Реторецепторы способны воспринимать 5,6-109 движения в секунду.

В подобном принципе работы зрительного восприятия заложен глубокий биологический смысл. «Информационная воронка» повышает надежность смены передач и резко сокращает вероятность ошибочного финала.

Пространственные и временные характеристики зрительного анализатора.

  • 1) острота зрения;
  • 2) поле зрения;
  • 3) объем зрительного восприятия.

Острота зрения - способность глаза различать мелкие детали предмета, она зависит от уровня освещенности, от расстояния до предмета, его положения относительно наблюдателя, от возраста.

Пороговый уровень восприятия составляет 15 смен. Для простых предметов 30-40 смен для сложных форм.

Каждый характер зрительного восприятия является его объем, т.е. количество предметов, который может охватить человек во время одного взгляда.

Поле зрение человека можно разделить на 3 зоны

  • 1 зона: 4 градуса.
  • 2 зона: 40 градусов.
  • 3 зона: 90 градусов.
  • 1 зона - зона центрального видения (наиболее четкое различение деталей);
  • 2 зона - зона ясного видения;
  • 3 зона - зона переферийного видения.

Большую роль в зрении играет движение глаз, которое подразделяются:

  • 1) гностические (познавательные);
  • 2) поисковые (установочные).

Время, в течение которого глаз познает предмет, составляет от 0,2 до 0,4 секунды.

Время, в течение которого переносится взгляд - 0,025 - 0,03 секунды.

Временные характеристики зрительного анализатора определяются временем, необходимым для возникновения зрительного оснащения.

  • 1) латентный (скрытый) период зрительной реакции.
  • 2) длительность инерции ощущению;
  • 3) критическая частота мелькания.

Латентным периодом называют промежуток времени от момента подачи сигнала до возникновения ощущения. Этот период зависит от интенсивности сигнала; от его значимости; от сложности работы оператора. Для большинства людей от 160 до 240.

Если возникает необходимость в последовательном реагировании на появляющиеся сигналы, то период их следования должен быть не меньше времени сохранения ощущения 0,2-0,5 секунды.

Критической частотой мелькания называется та min частота проблесков, при которой возникает слитное восприятие. Она зависит от яркости, размеров, и конфигурации от 15 до 25 Герц.

Вопрос о частоте мелькания имеет значение при решении 2 задач:

  • 1) в тех случаях, чтобы эта частота мелькания не замечалась.
  • 2) для привлечения внимания операторов (аварийная ситуации) 8 Герц - оптимальная частота.

К временным характеристикам зрительного анализа относится - время при переходе от света к темноте.

Похожие статьи