Аберрации - это что такое? Какие бывают аберрации? Сферическая аберрация в объективах Аберрация оптической системы.

20.06.2020

1. Введение в теорию аберраций

Когда речь идет о характеристиках объектива, очень часто приходится слышать слово аберрации . «Это отличный объектив, в нем практически исправлены все аберрации!», - тезис, который очень часто можно встретить в обсуждениях или обзорах. Гораздо реже можно услышать и диаметрально противоположное мнение, к примеру: «Это замечательный объектив, его остаточные аберрации хорошо выражены и формируют необыкновенно пластичный и красивый рисунок»…

Почему же возникают такие разные мнения? Я попробую дать ответ на этот вопрос: насколько это явление действительно хорошо/плохо для объективов и для жанров фотографии в целом. Но для начала, давайте попробуем разобраться, что, же такое аберрации фотографического объектива. Начнем мы с теории и некоторых определений.

В общем применении термин Аберрация (лат. ab- «от» + лат. errare «блуждать, заблуждаться») - это отклонение от нормы, ошибка, некое нарушение нормальной работы системы.

Аберрация объектива - ошибка, или погрешность изображения в оптической системе. Она вызвана тем, что в реальной среде может возникать существенное отклонение лучей от того направления, по которому они идут в расчетной «идеальной» оптической системе.

В итоге страдает общепринятое качество фотографического изображения: недостаточная резкость в центре, потеря контраста, сильная нерезкость по краям, искривление геометрии и пространства, цветные ореолы и т.п.

Основные аберрации, характерные для фотографических объективов, следующие:

  1. Коматическая аберрация.
  2. Дисторсия.
  3. Астигматизм.
  4. Кривизна поля изображения.

Перед тем как познакомиться поближе с каждой из них, давайте вспомним из статьи , как происходит прохождение через линзу лучей в идеальной оптической системе:

Илл. 1. Прохождение лучей в идеальной оптической системе.

Как мы видим, все лучим при этом собираются в одной точке F - главном фокусе. Но в реальности, все обстоит намного сложнее. Сущность оптических аберраций в том, что лучи, падающие на линзу из одной светящейся точки, не собираются тоже в одной точке. Итак, давайте посмотрим, какие отклонения происходят в оптической системе при воздействии различных аберраций.

Тут еще надо сразу отметить, что и в простой линзе и в сложном объективе все далее описываемые аберрации действуют совместно.

Действие сферической аберрации состоит в том, что лучи, падающие на края линзы, собираются ближе к линзе, чем лучи, падающие на центральную часть линзы. Вследствие этого, изображение точки на плоскости получается в виде размытого кружка или диска.

Илл. 2. Сферическая аберрация.

В фотографиях действие сферической аберрации проявляется в виде смягченного изображения. Особенно часто эффект заметен на открытых диафрагмах, причем объективы с большей светосилой больше подвержены этой аберрации. Если при этом сохраняется и резкость контуров, такой софт-эффект может быть весьма полезным для некоторых видов съемки, например, портретной.

Илл.3. Софт-эффект на открытой диафрагме обусловленный действием сферической аберрации.

В объективах построенных полностью из сферических линз практически невозможно полностью устранить этот вид аберраций. В сверхсветосильных объективах единственный эффективный способ ее существенной компенсации - использование асферических элементов в оптической схеме.

3. Коматическая аберрация, или «Кома»

Это частный вид сферической аберрации для боковых лучей. Действие ее заключается в том, что лучи, приходящие под углом к оптической оси не собираются в одной точке. При этом изображение светящейся точки на краях кадра получается в виде «летящей кометы», а не в форме точки. Кома также может привести к засвечиванию участков изображения в зоне нерезкости.

Илл. 4. Кома.

Илл. 5. Кома на фотоизображении

Является прямым следствием дисперсии света. Суть ее состоит в том, что луч белого света, проходя через линзу, разлагается на составляющие его цветные лучи. Коротковолновые лучи (синие, фиолетовые) преломляются в линзе сильнее и сходятся ближе к ней, чем длиннофокусные (оранжевые, красные).

Илл. 6. Хроматическая аберрация. Ф - фокус фиолетовых лучей. К - фокус красных лучей.

Здесь, как и в случае сферической аберрации, изображение светящейся точки на плоскости, получается в виде размытого кружка/диска.

На фотографиях хроматическая аберрация проявляется в виде посторонних оттенков и цветных контуров у объектов съемки. Особенно заметно влияние аберрации в контрастных сюжетах. В настоящее время ХА достаточно легко исправляется в RAW-конверторах, если съемка велась в RAW-формате.

Илл. 7. Пример проявления хроматической аберрации.

5. Дисторсия

Дисторсия проявляется в искривлении и искажении геометрии фотоснимка. Т.е. масштаб изображения меняется с удалением от центра поля к краям, вследствие чего прямые линии искривляются к центру или к краям.

Различают бочкообразную или отрицательную (наиболее характерна для широкого угла) и подушкообразную или положительную дисторсию (чаще проявляется на длинном фокусе).

Илл. 8. Подушкообразная и бочкообразная дисторсия

Дисторсия намного сильнее обычно выражена у объективов с переменным фокусным расстоянием (зумы), чем у объективов с постоянным фокусным (фиксы). У некоторых эффектных объективов, например Fish Eye (Рыбий глаз), намеренно не исправляется и даже подчеркивается дисторсия.

Илл. 9. Ярко-выраженная бочкообразная дисторсия объектива Zenitar 16 mm FishEye.

В современных объективах, в том числе с переменным фокусным расстоянием, дисторсия достаточно эффективно корректируется введением в оптическую схему асферической линзы (или нескольких линз).

6. Астигматизм

Астигматизм (от греч. Stigma - точка) характеризуется в невозможности получить на краях поля изображения светящейся точки и в виде точки и даже в виде диска. При этом светящаяся точка, находящаяся на главной оптической оси, передается как точка, но если точка вне этой оси - как затемнение, скрещенные линии и т.д.

Это явление чаще всего наблюдается по краям изображения.

Илл. 10. Проявление астигматизма

7. Кривизна поля изображения

Кривизна поля изображения - это аберрация, в результате которой изображение плоского объекта, перпендикулярного к оптической оси объектива, лежит на поверхности, вогнутой либо выпуклой к объективу. Эта аберрация вызывает неравномерную резкость по полю изображения. Когда центральная часть изображения фокусирована резко, то его края будут лежать не в фокусе, и изобразятся не резко. Если установку на резкость производить по краям изображения, то его центральная часть будет нерезкой.

Рассмотрим даваемое оптической системой изображение Точки, расположенной на оптической оси. Так как оптическая система обладает круговой симметрией относительно оптической оси, то достаточно ограничиться выбором лучей, лежащих в меридиональной плоскости. На рис. 113 показан ход лучей, характерный для положительной одиночной линзы. Положение

Рис. 113. Сферическая аберрация положительной лннзы

Рис. 114. Сферическая аберрация для точки вне оси

идеального изображения предметной точки А определяется параксиальным лучом, пересекающим оптическую ось на расстоянии от последней поверхности. Лучи, образующие с оптической осью конечные углы не приходят в точку идеального изображения. Для одиночной положительной линзы, чем больше абсолютное значение угла тем ближе к линзе луч пересекает оптическую ось. Это объясняется неодинаковой оптической силой линзы в ее различных зонах, которая увеличивается по мере удаления от оптической оси.

Указанное нарушение гомоцентричности вышедшего пучка лучей можно характеризовать разностью продольных отрезков для параксиальных лучей и для лучей, проходящих через плоскость входного зрачка на конечных высотах: Эта разность называется продольной сферической аберрацией.

Наличие сферической аберрации в системе приводит к тому, что вместо резкого изображения точки в плоскости идеального изображения получается кружок рассеяния, диаметр которого равен удвоенному значению Последнее связано с продольной сферической аберрацией соотношением

и называется поперечной сферической аберрацией.

Следует отметить, что при сферической аберрации сохраняется симметрия в вышедшем из системы пучке лучей. В отличие от других монохроматических аберраций сферическая аберрация имеет место во всех точках поля оптической системы, причем при отсутствии других аберраций для точек вне оси вышедший из системы пучок лучей будет оставаться симметричным относительно главного луча (рис. 114).

Приближенное значение сферической аберрации можно определить по формулам аберраций третьего порядка через

Для предмета, расположенного на конечном расстоянии, как следует из рис. 113,

В пределах действенности теории аберраций третьего порядка можно принять

Если положить, что то согласно условиям нормировки получим

Тогда по формуле (253) найдем, что поперечная сферическая аберрация третьего порядка для предметной точки, расположенной на конечном расстоянии,

Соответственно для продольной сферической аберраций третьего лорядка при допущении согласно (262) и (263) получим

Формулы (263) и (264) справедливы и для случая предмета, расположенного в бесконечности, если вычислена при условиях нормировки (256), т. е. при реальном фокусном расстоянии.

В практике аберрационного расчета оптических систем при вычислении сферической аберрации третьего порядка удобно пользоваться формулами, содержащими координату луча на входном зрачке. Тогда при согласно (257) и (262) получим:

если вычислена при условиях нормировки (256).

Для условий нормировки (258), т. е. для приведенной системы, согласно (259) и (262) будем иметь:

Из приведенных выше формул следует, что при данной сферическая аберрация третьего порядка тем больше, чем больше координата луча на входном зрачке.

Так как сферическая аберрация присутствует для всех точек поля, то при аберрационной коррекции оптической системы первостепенное внимание уделяют исправлению сферической аберрации. Наиболее простой оптической системой со сферическими поверхностями, в которой можно уменьшить сферическую аберрацию, является комбинация положительной и отрицательной линз. Как у положительной, так и у отрицательной линз крайние зоны преломляют лучи сильнее, чем зоны, расположенные вблизи оси (рис. 115). Отрицательная линза имеет положительную сферическую аберрацию. Поэтому комбинация положительной линзы, имеющей отрицательную сферическую аберрацию, с отрицательной линзой позволяет получить систему с исправленной сферической аберрацией. К сожалению, устранить сферическую аберрацию можно только для некоторых лучей, но нельзя ее полностью исправить в пределах всего входного зрачка.

Рис. 115. Сферическая аберрация отрицательной линзы

Таким образом, любая оптическая система всегда имеет остаточную сферическую аберрацию. Остаточные аберрации оптической системы обычно представляют в виде таблиц и иллюстрируют графиками. Для предметной точки, расположенной на оптической оси, приводятся графики продольной и поперечной сферических аберраций, представленные в виде функций координат, или

Кривые продольной и соответствующей ей поперечной сферической аберрации показаны на рис. 116. Графики на рис. 116, а соответствуют оптической системе с недоисправленной сферической аберрацией. Если для такой системы ее сферическая аберрация определяется только аберрациями третьего порядка, то согласно формуле (264) кривая продольной сферической аберрации имеет вид квадратичной параболы, а кривая поперечной аберрации - кубической параболы. Графики на рис. 116, б соответствуют оптической системе, у которой сферическая аберрация исправлена для луча, проходящего через край входного зрачка, а графики на рис. 116, в - оптической системе с перенаправленной сферической аберрацией. Исправление или переисправление сферической аберрации можно получить, например, комбинируя положительную и отрицательную линзы.

Поперечная сферическая аберрация характеризует кружок рассеяния, который получается вместо идеального изображения точки. Диаметр кружка рассеяния для данной оптической системы зависит от выбора плоскости изображения. Если эту плоскость сместить относительно плоскости идеального изображения (плоскости Гаусса) на величину (рис. 117, а), то в смещенной плоскости получим поперечную аберрацию связанную с поперечной аберрацией в плоскости Гаусса зависимостью

В формуле (266) слагаемое на графике поперечной сферической аберрации, построенном в координатах является прямой, проходящей через начало координат. При

Рис. 116. Графическое представление продольной и поперечной сферических аберраций

Аберрация - многозначный термин, который применяется в различных сферах знаний: астрономии, оптике, биологии, фотографии, медицине и других. Что такое аберрации и какие существуют виды аберраций, будет рассмотрено в данной статье.

Значение термина

Слово "аберрация" происходит из латинского языка и буквально переводится как "отклонение, искажение, удаление". Таким образом, аберрация - это явление отклонения от определенного значения.

В каких научных областях можно наблюдать явление аберрации?

Аберрация в астрономии

В астрономии используется понятие аберрации света. Под ней понимают визуальное смещение небесного тела или объекта. Вызвано оно скоростью распространения света относительно наблюдаемого объекта и наблюдателя. Иными словами, движущийся наблюдатель видит объект не там, где наблюдал бы его, находясь в состоянии покоя. Обусловлено это тем, что наша планета находится в постоянном движении, поэтому состояние покоя наблюдателя физически невозможно.

Поскольку явление аберрации вызвано перемещением Земли, выделяют два типа:

  • суточная аберрация: отклонение вызвано суточным вращением Земли вокруг своей оси;
  • годичная аберрация: обусловлена обращением планеты вокруг Солнца.

Данное явление было открыто в 1727 году, и с тех пор немало ученых уделяли внимание аберрации света: Томас Юнг, Эйри, Эйнштейн и другие.

Аберрация оптической системы

Оптическая система - это набор оптических элементов, преобразующих световые пучки. Самой важной для человека системой такого рода является глаз. Также такие системы используются для конструирования оптических приборов - фотоаппаратов, телескопов, микроскопов, проекторов и т. д.

Оптические аберрации - это различные искажения изображений в оптических системах, отражающиеся на конечном результате.

Когда объект отдаляется от так называемой оптической оси, возникает рассеивание лучей, конечное изображение получается нечетким, несфокусированным, размытым или имеющим цвет, отличный от исходного. Это и есть аберрация. При определении степени аберрации могут применяться специальные формулы для ее расчета.

Аберрация линз разделяется на несколько видов.

Монохроматические аберрации

В совершенной оптической системе луч от каждой точки предмета на выходе также концентрируется в одной точке. На практике такого результата добиться невозможно: луч, достигая поверхности, концентрируется в разных точках. Именно это явление аберрации обуславливает нечеткость конечного изображения. Данные искажения присутствуют в любой реальной оптической системе и избавиться от них невозможно.

Хроматическая аберрация

Данный тип аберраций обусловлен явлением дисперсии - рассеивания света. Разные цвета спектра имеют различные скорости распространения и степени преломления. Таким образом, фокусное расстояние оказывается разным для каждого цвета. Это приводит к появлению на изображении цветных контуров или разной окрашенности участков.

Явление хроматической аберрации может быть снижено при использовании специальных ахроматических линз в оптических приборах.

Сферическая аберрация

Идеальный пучок света, в котором все лучи идут только через одну точку, называют гомоцентрическим.

При явлении сферической аберрации лучи света, проходящие на разных расстояниях от оптической оси, перестают быть гомоцентрическими. Данное явление происходит даже тогда, когда исходная точка находится непосредственно на оптической оси. Несмотря на то что лучи идут симметрично, удаленные лучи подвергаются более сильному преломлению, и конечная точка приобретает неоднородную освещенность.

Снизить явление сферической аберрации можно, используя линзу с увеличенным радиусом поверхности.

Дисторсия

Явление дисторсии (искривления) проявляется в несовпадении формы исходного объекта и его изображения. В результате на изображении появляются искаженные контуры объекта. может быть двух типов: вогнутость контуров или их выпуклость. При явлении комбинированной дисторсии изображение может иметь сложный характер искажений. Данный тип аберрации обусловлен расстоянием между оптической осью и источником.

Явление дисторсии может быть скорректировано специальным подбором линз в оптической системе. Для коррекции фотографий могут применяться графические редакторы.

Кома

Если световой пучок проходит под углом по отношению к оптической оси, то наблюдается явление комы. Изображение точки в этом случае имеет вид рассеянного пятна, напоминающего комету, что объясняет название данного типа аберраций. При фотографировании кома часто проявляется во время съемки на открытой диафрагме.

Корректировать данное явление можно, как в случае сферических аберраций или дисторсии, подбором линз, а также диафрагмированием - уменьшением сечения светового пучка с помощью диафрагм.

Астигматизм

При данном типе аберраций точка, лежащая не на оптической оси, может приобретать в изображении вид овала или линии. Эта аберрация вызвана различной кривизной оптической поверхности.

Исправляется это явление подбором особой кривизны поверхности и толщины линз.

Таковы основные аберрации, характерные для оптических систем.

Аберрации хромосом

Этот тип аберрации проявляется мутациями, перестройками в структуре хромосом.

Хромосома - это структура в ядре клетки, ответственная за передачу наследственной информации.

Аберрации хромосом обычно возникают при делении клетки. Они бывают внутрихромосомными и межхромосомными.

Виды аберраций:


Причины хромосомных аберраций следующие:

  • воздействие патогенных микроорганизмов - бактерий и вирусов, проникающих в структуру ДНК;
  • физические факторы: радиация, ультрафиолет, экстремальные температуры, давление, электромагнитное излучение и т. д.;
  • химические соединения искусственного происхождения: растворители, пестициды, соли тяжелых металлов, окись азота и т. д.

Хромосомные аберрации приводят к серьезным последствиям для здоровья. Вызываемые ими заболевания обычно носят названия специалистов, описавших их: синдром Дауна, синдром Шершевского-Тернера, синдром Эдвардса, синдром Клайнфельтера, синдром Вольфа-Хиршхорна и другие.

Чаще всего заболевания, спровоцированные данным типом аберраций, затрагивают умственную деятельность, строение скелета, сердечно-сосудистую, пищеварительную и нервную системы, репродуктивную функцию организма.

Вероятность возникновения данных заболеваний не всегда удается предсказать. Тем не менее, уже на этапе перинатального развития ребенка с помощью специальных исследований можно увидеть имеющиеся патологии.

Аберрация в энтомологии

Энтомология - раздел зоологии, изучающий насекомых.

Данный тип аберрации проявляется спонтанно. Обычно он выражается в малозначительном изменении структуры тела или окраски насекомых. Чаще всего аберрация наблюдается у чешуекрылых и жесткокрылых.

Причинами ее возникновения служит воздействие на насекомых хромосомных или физических факторов на стадии, предшествующей имаго (взрослая особь).

Таким образом, аберрация - это явление отклонения, искажения. Данный термин появляется во многих научных отраслях. Чаще всего он используется применительно к оптическим системам, медицине, астрономии и зоологии.

© 2013 сайт

Аберрации фотографического объектива – это последнее, о чём стоит думать начинающему фотографу. Они абсолютно не влияют на художественную ценность ваших фотографий, да и на техническое качество снимков их влияние ничтожно. Тем не менее, если вы не знаете, чем занять своё время, прочтение данной статьи поможет вам разобраться в многообразии оптических аберраций и в методах борьбы с ними, что, конечно же, бесценно для настоящего фотоэрудита.

Аберрации оптической системы (в нашем случае – фотографического объектива) – это несовершенство изображения, которое вызывается отклонением лучей света от пути, по которому они должны были бы следовать в идеальной (абсолютной) оптической системе.

Свет от всякого точечного источника, пройдя через идеальный объектив, должен был бы формировать бесконечно малую точку на плоскости матрицы или плёнки. На деле этого, естественно, не происходит, и точка превращается в т.н. пятно рассеяния, но инженеры-оптики, разрабатывающие объективы, стараются приблизиться к идеалу насколько это возможно.

Различают монохроматические аберрации, в одинаковой степени присущие лучам света с любой длиной волны, и хроматические, зависящие от длины волны, т.е. от цвета.

Коматическая аберрация или кома возникает, когда лучи света проходят через линзу под углом к оптической оси. В результате изображение точечных источников света приобретает по краям кадра вид ассиметричных пятен каплеобразной (или, в тяжёлых случаях, кометообразной) формы.

Коматическая аберрация.

Кома бывает заметна по краям кадра при съёмке с широко открытой диафрагмой. Поскольку диафрагмирование уменьшает количество лучей, проходящих через край линзы, оно, как правило, устраняет и коматические аберрации.

Конструкционно с комой борются примерно так же, как и со сферическими аберрациями.

Астигматизм

Астигматизм проявляется в том, что для наклонного (не параллельного оптической оси объектива) пучка света лучи, лежащие в меридиональной плоскости, т.е. плоскости, которой принадлежит оптическая ось, фокусируются отличным образом от лучей, лежащих в сагиттальной плоскости, которая перпендикулярна плоскости меридиональной. Это, в конечном итоге приводит к ассиметричному растягиванию пятна нерезкости. Астигматизм заметен по краям изображения, но не в его центре.

Астигматизм труден для понимания, поэтому я попробую проиллюстрировать его на простом примере. Если представить, что изображение буквы А находится в верхней части кадра, то при астигматизме объектива оно бы выглядело так:

Меридиональный фокус.
Сагиттальный фокус.
При попытке достичь компромисса мы получаем универсально нерезкое изображение.
Исходное изображение без астигматизма.

Для исправления астигматической разности меридионального и сагиттального фокусов требуется не менее трёх элементов (обычно два выпуклых и один вогнутый).

Очевидный астигматизм в современном объективе указывает обычно на непараллельность одного или нескольких элементов, что является однозначным дефектом.

Под кривизной поля изображения подразумевают характерное для весьма многих объективов явление, при котором резкое изображение плоского объекта фокусируется объективом не на плоскость, а на некую искривлённую поверхность. Например, у многих широкоугольных объективов наблюдается выраженная кривизна поля изображения, в результате которой края кадра оказываются сфокусированы как бы ближе к наблюдателю, чем центр. У телеобъективов кривизна поля изображения обычно выражена слабо, а у макрообъективов исправляется практически полностью – плоскость идеального фокуса становится действительно плоской.

Кривизну поля принято считать аберрацией, поскольку при фотографировании плоского объекта (тестовой таблицы или кирпичной стены) с фокусировкой по центру кадра, его края неизбежно окажутся не в фокусе, что может быть ошибочно принято за нерезкость объектива. Но в реальной фотографической жизни мы редко сталкиваемся с плоскими объектами – мир вокруг нас трёхмерен, – а потому свойственную широкоугольным объективам кривизну поля я склонен рассматривать скорее как их достоинство, нежели недостаток. Кривизна поля изображения – это то, что позволяет получить одинаково резкими и передний, и задний план одновременно. Посудите сами: центр большинства широкоугольных композиций находится вдалеке, в то время как ближе к углам кадра, а также внизу, располагаются объекты переднего плана. Кривизна поля делает и то, и другое резким, избавляя нас от необходимости закрывать диафрагму сверх меры.

Кривизна поля позволила при фокусировке на дальние деревья получить резкими ещё и глыбы мрамора внизу слева.
Некоторая нерезкость в области неба и на дальних кустах справа меня в этой сцене мало беспокоила.

Следует, однако, помнить, что для объективов с выраженной кривизной поля изображения непригоден способ автоматической фокусировки, при котором вы сперва фокусируетесь на ближнем к вам объекте, используя центральный фокусировочный датчик, а затем перекомпоновываете кадр (см. «Как пользоваться автофокусом »). Поскольку объект при этом переместится из центра кадра на периферию, вы рискуете получить фронт-фокус вследствие кривизны поля. Для идеального фокуса придётся сделать соответствующую поправку.

Дисторсия

Дисторсия – это аберрация при которой объектив отказывается изображать прямые линии прямыми. Геометрически это означает нарушение подобия между объектом и его изображением вследствие изменения линейного увеличения по полю зрения объектива.

Выделяют два наиболее распространённых типа дисторсии: подушкообразная и бочкообразная.

При бочкообразной дисторсии линейное увеличение уменьшается по мере удаления от оптической оси объектива, в результате чего прямые линии по краям кадра изгибаются наружу, и изображение выглядит выпуклым.

При подушкообразной дисторсии линейное увеличение, напротив, возрастает с удалением от оптической оси. Прямые линии изгибаются внутрь, и изображение кажется вогнутым.

Кроме того, встречается комплексная дисторсия, когда линейное увеличение сперва уменьшается по мере удаления от оптической оси, но ближе к углам кадра снова начинает возрастать. В таком случае прямые линии приобретают форму усов.

Дисторсия наиболее выражена в зум-объективах, особенно с большой кратностью, но заметна и в объективах с фиксированным фокусным расстоянием. Для широкоугольных объективов характерна преимущественно бочкообразная дисторсия (экстремальный пример такой дисторсии – объективы типа fisheye или «рыбий глаз»), в то время как телеобъективам чаще свойственна подушкообразная дисторсия. Нормальные объективы, как правило, наименее подвержены дисторсии, но полностью исправляется она только в хороших макрообъективах.

У зум-объективов часто можно наблюдать бочкообразную дисторсию в широкоугольном положении и подушкообразную дисторсию в телеположении при практически свободной от дисторсии середине диапазона фокусных расстояний.

Степень выраженности дисторсии может также изменяться в зависимости от дистанции фокусировки: у многих объективов дисторсия очевидна, когда они сфокусированы на близлежащем объекте, но делается почти незаметной при фокусировке на бесконечность.

В XXI в. дисторсия не является большой проблемой. Практически все RAW-конвертеры и многие графические редакторы позволяют исправлять дисторсию при обработке фотоснимков, а многие современные камеры и вовсе делают это самостоятельно в момент съёмки. Программное исправление дисторсии при наличии надлежащего профиля даёт прекрасные результаты и почти не влияет на резкость изображения.

Хочу также заметить, что на практике исправление дисторсии требуется не так уж часто, ведь дисторсия бывает заметна невооружённым глазом только тогда, когда по краям кадра присутствуют заведомо прямые линии (горизонт, стены зданий, колонны). В сценах же, не имеющих на периферии строго прямолинейных элементов, дисторсия, как правило, совершенно не режет глаз.

Хроматические аберрации

Хроматические или цветовые аберрации обусловлены дисперсией света. Не секрет, что показатель преломления оптической среды зависит от длины световой волны. У коротких волн степень преломления выше, чем у длинных, т.е. лучи синего цвета преломляются линзами объектива сильнее, чем красного. Как следствие, изображения предмета, формируемые лучами различного цвета, могут не совпадать между собой, что приводит к появлению цветных артефактов, которые и называются хроматическими аберрациями.

В чёрно-белой фотографии хроматические аберрации не так заметны, как в цветной, но, тем не менее, они существенно ухудшают резкость даже чёрно-белого изображения.

Различают два основных типа хроматических аберраций: хроматизм положения (продольная хроматическая аберрация) и хроматизм увеличения (хроматическая разность увеличения). В свою очередь, каждая из хроматических аберраций может быть первичной или вторичной. Также к хроматическим аберрациям относят хроматические разности геометрических аберраций, т.е. различную выраженность монохроматических аберраций для волн разной длины.

Хроматизм положения

Хроматизм положения или продольная хроматическая аберрация возникает, когда лучи света с разной длиной волны фокусируются в разных плоскостях. Иными словами, лучи синего цвета фокусируются ближе к задней главной плоскости объектива, а лучи красного цвета – дальше, чем лучи зелёного цвета, т.е. для синего цвета наблюдается фронт-фокус, а для красного – бэк-фокус.

Хроматизм положения.

К счастью для нас, хроматизм положения научились исправлять ещё в XVIII в. путём комбинирования собирательной и рассеивающей линз, изготовленных из стёкол с разными показателями преломления. В результате продольная хроматическая аберрация флинтовой (собирательной) линзы компенсируется за счёт аберрации кроновой (рассеивающей) линзы, и лучи света с различной длиной волны могут быть сфокусированы в одной точке.

Исправление хроматизма положения.

Объективы, в которых исправлен хроматизм положения, называются ахроматическими. Практически все современные объективы являются ахроматами, так что о хроматизме положения на сегодняшний день можно спокойно забыть.

Хроматизм увеличения

Хроматизм увеличения возникает за счёт того, что линейное увеличение объектива различается для разных цветов. В результате изображения, формируемые лучами с различной длиной волны, имеют немного разные размеры. Поскольку изображения разного цвета отцентрированы по оптической оси объектива, хроматизм увеличения отсутствует в центре кадра, но возрастает к его краям.

Хроматизм увеличения проявляется на периферии снимка в виде цветной каймы вокруг объектов с резкими контрастными краями, такими как, например, тёмные ветви деревьев на фоне светлого неба. В областях, где подобные объекты отсутствуют, цветная кайма может быть незаметной, но общая чёткость всё равно падает.

При конструировании объектива хроматизм увеличения исправить значительно труднее, чем хроматизм положения, поэтому эту аберрацию можно в той или иной степени наблюдать у весьма многих объективов. Этому подвержены в первую очередь зум-объективы с большой кратностью, особенно в широкоугольном положении.

Тем не менее, хроматизм увеличения не является сегодня поводом для беспокойства, поскольку он достаточно легко исправляется программными средствами. Все хорошие RAW-конвертеры в состоянии устранять хроматические аберрации в автоматическом режиме. Кроме того, всё больше цифровых фотоаппаратов снабжаются функцией исправления аберраций при съёмке в формате JPEG. Это означает, что многие объективы, считавшиеся в прошлом посредственными, сегодня с помощью цифровых костылей могут обеспечить вполне приличное качество изображения.

Первичные и вторичные хроматические аберрации

Хроматические аберрации подразделяются на первичные и вторичные.

Первичные хроматические аберрации – это хроматизмы в своём исходном неисправленном виде, обусловленные различной степенью преломления лучей разного цвета. Артефакты первичных аберраций окрашены в крайние цвета спектра – сине-фиолетовый и красный.

При исправлении хроматических аберраций хроматическая разность по краям спектра устраняется, т.е. синие и красные лучи начинают фокусироваться в одной точке, которая, к сожалению, может не совпадать с точкой фокусировки зелёных лучей. При этом возникает вторичный спектр, поскольку хроматическая разность для середины первичного спектра (зелёных лучей) и для его сведённых вместе краёв (синих и красных лучей) остаётся не устранённой. Это и есть вторичные аберрации, артефакты которых окрашены в зелёный и пурпурный цвета.

Когда говорят о хроматических аберрациях современных ахроматических объективов, в подавляющем большинстве случаев имеют в виду именно вторичный хроматизм увеличения и только его. Апохроматы, т.е. объективы, в которых полностью устранены как первичные, так и вторичные хроматические аберрации, чрезвычайно сложны в производстве и вряд ли когда-нибудь станут массовыми.

Сферохроматизм – это единственный заслуживающий упоминания пример хроматической разности геометрических аберраций и проявляется как едва заметное окрашивание зон вне фокуса в крайние цвета вторичного спектра.


Сферохроматизм возникает из-за того, что сферическая аберрация, о которой говорилось выше , редко бывает в равной степени скорректирована для лучей разного цвета. В результате пятна нерезкости на переднем плане могут иметь лёгкую пурпурную кайму, а на заднем плане – зелёную. Сферохроматизм в наибольшей степени свойственен светосильным длиннофокусным объективам, при съёмке с широко открытой диафрагмой.

О чём стоит беспокоиться?

Беспокоиться не стоит. Обо всём, о чём следовало побеспокоиться, разработчики вашего объектива, скорее всего, уже побеспокоились.

Идеальных объективов не бывает, поскольку исправление одних аберраций ведёт к усилению других, и конструктор объектива, как правило, старается найти разумный компромисс между его характеристиками. Современные зумы и так содержат по двадцать элементов, и не стоит усложнять их сверх меры.

Все криминальные аберрации исправляются разработчиками весьма успешно, а с теми, что остались легко поладить. Если у вашего объектива есть какие-то слабые стороны (а таких объективов – большинство), научитесь обходить их в своей работе. Сферическая аберрация, кома, астигматизм и их хроматические разности уменьшаются при диафрагмировании объектива (см. «Выбор оптимальной диафрагмы »). Дисторсия и хроматизм увеличения устраняются при обработке фотографий. Кривизна поля изображения требует дополнительного внимания при фокусировке, но тоже не смертельна.

Иными словами, вместо того чтобы обвинять оборудование в несовершенстве, фотолюбителю следует скорее начать совершенствоваться самому , досконально изучив свои инструменты и используя их в соответствии с их достоинствами и недостатками.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект , внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

Рис.1 Иллюстрация недоисправленных сферической аберрации. Поверхрность на периферии линзы имеет фокусное расстояние короче, чем в центре.

Большинство фотографических объективов состоят из элементов со сферическими поверхностями. Такие элементы относительно легко изготовить, но их форма неидеальна для формирования изображения.

Сферическая аберрация - это один из дефектов при формировании изображения, возникающий из-за сферической формы линзы. Рис. 1 иллюстрирует сферическую аберрацию для положительной линзы.

Лучи, которые проходят сквозь линзу дальше от оптической оси, сфокусированы в позиции с . Лучи, которые проходят ближе к оптической оси, сфокусированы в позиции a , они находятся ближе к поверхности линзы. Таким образом положение фокуса зависит от места, в котором проходят лучи сквозь линзу.

Если краевой фокус ближе к линзе, чем осевой фокус, как происходит с положительной линзой Рис. 1, тогда говорят, что сферическая аберрация недоисправленная . И наоборот, если краевой фокус находится за осевым фокусом, то говорят, что сферическая аберрация переисправленная .

Изображение точки, сделанное объективом со сферическими аберрациями обычно получаются точками, окруженными ореолом света. Сферическая аберрация обычно проявляются на фотографиях смягчением контраста и размытием мелких деталей.

Сферическая аберрация однородна по полю, это значит, что продольный фокус между краями линзы и центром не зависит от наклона лучей.

Из Рис.1 кажется, что на линзе со сферической аберрацией невозможно добиться хорошей резкости. В любом положении сзади линзы на светочувствительном элементе (пленка или матрица) вместо четкой точки будет проецироваться диск размытия.

Тем не менее, существует геометрически "лучший" фокус, который соответствует диску наименьшего размытия. Это своеродный ансамбль световых конусов имеет минимальное сечение, в положении b .

Смещение фокуса (Focus shift)

Когда диафрагма находится за линзой, наблюдается интересное явление. Если диафрагма прикрыта таким образом, что срезает лучи на периферии линзы, то фокус сдвигается вправо. При сильно прикрытой диафрагме наилучший фокус будет наблюдаться в положении c , то есть положения дисков наименьшего размытия при прикрытой диафрагме и при открытой диафрагме будут различаться.

Чтобы получить наилучшую резкость на прикрытой диафрагме, матрица (пленка) должна размещаться в положении c . Этот пример четко показывает, что существует вероятность того, что наилучшая резкость не будет достигнута, поскольку большинство фотографических систем рассчитываются на работу с открытой диафрагмой.

Фотограф фокусируется при полностью открытой диафрагме, и проецирует на матрицу диск наименьшего размытия в позиции b , затем при съемке диафрагма автоматически закрывается до установленного значения, и он ничего не подозревает о последующем в этот момент сдвиге фокуса , что не позволяет ему добиться наилучшей резкости.

Конечно, прикрытая диафрагма уменьшает сферические аберрации также и в точке b , но все же в ней будет не наилучшая резкость.

Пользователи зеркальных фотоаппаратов могут закрыть диафрагму для предварительного просмотра , чтобы сфокусироваться при реальной диафрагме.

Автоматическую компенсацию смещения фокуса предложил Норман Гольдберг. Фирма Zeiss запустила линию дальномерных объективов для фотоаппаратов Zeiss Ikon, которые имеют специально разработанную схему для минимизации смещения фокуса с изменением значений диафрагмы. При этом сферические аберрации у объективов для дальномерных фотоаппаратов существенно снижаются. Вы спросите насколько смещение фокуса существенно для объективов дальномерных фотоаппаратов? По заявлению производителя объектива LEICA NOCTILUX-M 50mm f/1, это значение порядка 100 мкм.

Характер размытия вне зоны фокуса

Влияние сферических аберраций на изображение в фокусе трудно различить, но их можно четко увидеть в изображении, которое находится в легком расфокусе. Сферическая аберрация оставляет видимый след в зоне нерезкости.

Возвращаясь к Рис.1 можно отметить, что распределение интенсивности света в диске размытия при наличии сферической аберрации не является равномерным.

В положении c диск размытия характеризуется яркой сердцевиной, окруженной слабым ореолом. В то время как диск размытия в положении a имеет более темную сердцевину, окруженную ярким кольцом света. Такие аномальные распределения света могут проявляться в зоне нерезкости изображения.

Рис. 2 Изменения размытия перед и за точкой в фокусе

Пример на Рис. 2 показывает точку в центре кадра, снятую в режиме макро 1:1 объективом 85/1.4, установленным на макромех. Когда матрица находится на 5 мм сзади наилучшего фокуса (точка посредине), диск размытия показывает эффект яркого кольца (левое пятно), подобные диски размытия получаются у зеркально-менисковых объективов.

А когда матрица находится на 5 мм впереди наилучшего фокуса, (т.е. ближе к объективу), характер размытия изменился в сторону яркого центра, окуженного слабым ореолом. Как видно, у объектива переисправлена сферическая аберрация, поскольку он ведет себя противоположно примеру на Рис. 1.

Следующий пример иллюстрирует действие двух аберраций, на изображениях вне фокуса.

На Рис. 3 изображен крестик, который сфотографирован по центру кадра, тем же объективом 85/1.4. Макромех вытянут примерно на 85 мм, что дает увеличение примерно 1:1. Фотоаппарат (матрица) перемещался с шагом 1 мм в обе стороны от максимального фокуса. Крестик является более сложным изображением чем точка, а показатели цвета дают наглядные иллюстрации его размытий.

Рис. 3 Цифры на иллюстрациях указывают на изменения дистанции от объектива до матрицы, это миллиметры. камера двигается от -4 до +4 мм с шагом 1 мм от положения наилучшего фокуса (0)

Сферическая аберрация отвечает за жесткий характер размытия при отрицательных расстояниях и за переход к мягкому размытию при положительных. Также интерес представляют цветовые эффекты, которые возникают из-за продольной хроматической аберрации (осевой цвет). Если объектив плохо собран, то сферическая аберрация и осевой цвет это единственные аберрации, которые проявляются в центре изображения.

Чаще всего сила а иногда и характер сферической аберрации зависит от длинны волны света. В таком случае совместное воздействие сферической аберрации и осевого цвета называется . Из этого становится ясно, что явление, проиллюстрированное на Рис. 3 показывает, что данный объектив не предназначен для использовании в качестве макрообъектива. Большинство объективов оптимизированы для использования в ближнем поле фокусировки а также для фокусировки на бесконечность, но не для макро 1:1. При таком приближении обычные объективы будут вести себя хуже чем макрообъективы, которые используются специально на ближних дистанциях.

Тем не менее, даже если объектив используется для стандартного применения, сферохроматизм может проявляться в зоне нерезкости при обыкновенной съемке и влиять на качество .

Выводы
Конечно, иллюстрация на Рис. 1 является преувеличением. В реальности количество остаточных сферических аберраций в фотографических объективах мало. Этот эффект значительно уменьшен благодаря комбинированию элементов объектива в следствии чего компенсируются суммы противоположных сферических аберраций, использованию высококачественного стекла, тщательно продуманной геометрией линз и использованием асферических элементов. Кроме того, могут быть использованы плавающие элементы для уменьшения сферических аберраций в определенном диапазоне рабочих расстояний.

В случае объективов, с недоисправленой сферической аберрацией эффективный способ улучшить качество изображения это прикрыть диафрагму. Для недоисправленного элемента на Рис. 1 диаметр дисков размытия уменьшается пропорционально кубу диаметра диафрагмы.

Эта зависимость может отличаться для остаточных сферических аберраций в сложных схемах объективов, но, как правило закрытие диафрагмы на одну ступень уже дает заметное улучшение изображения.

Альтернативно, вместо того, чтобы бороться со сферической аберрацией, фотограф может намеренно ее использовать. Смягчающие фильтры Zeiss, несмотря на плоскую поверхность добавляют в изображение сферические аберрации. Они популярны среди фотографов-портретистов для получения софт-эффекта и импрессивного характера изображения.

© Paul van Walree 2004–2015
Перевод: Иван Косареков

Похожие статьи