Большую часть всей жизни звезды занимают процессы. Цикл жизни звезды

30.09.2019

Эволюция звезд - изменение физ. характеристик, внутр. строения и хим. состава звезд со временем. Важнейшие задачи теории Э.з. - объяснение образования звезд, изменения их наблюдаемых характеристик, исследование генетической связи различных групп звезд, анализ их конечных состояний.

Поскольку в известной нам части Вселенной ок. 98-99% массы наблюдаемого вещества содержится в звездах или прошло стадию звезд, объяснение Э.з. явл. одной из наиболее важных проблем астрофизики.

Звезда в стаыционарном состоянии - это газовый шар, к-рый находится в гидростатич. и тепловом равновесии (т.е. действие сил тяготения уравновешино внутр. давлением, а потери энергии на излучение компенсируются энергией, выделяющейся в недрах звезды, см. ). "Рождение" звезды - это образование гидростатически равновесного объекта, излучение к-рого поддерживаются за счет собст. источников энергии. "Смерть" звезды - необратимое нарушение равновесия, ведущее к разрушению звезды или к ее катастрофич. сжатию.

Выделение гравитац. энергии может играть определяющую роль лишь тогда, когда темп-ра недр звезды недостаточна для того, чтобы ядерное энерговыделение могло компенсировать потери энергии, и звезда в целом или ее часть должна сжиматься для поддержания равновесия. Высвечивание тепловой энергии становится важным лишь после исчерпания запасов ядерной энергии. Т.о., Э.з. можно представить как последовательную смену источников энергии звезд.

Характерное время Э.з. слишком велико для того, чтобы можно было всю эволюцию проследить непосредственно. Поэтому осн. методом исследования Э.з. явл. построение последовательностей моделей звезд, описывающих изменения внутр. строения и хим. состава звезд со временем. Эволюц. последовательности затем сопоставляются с результатами наблюдений, напр., с (Г.-Р.д.), суммирующей наблюдения большого числа звезд, находящихся на разных стадиях эволюции. Особо важную роль играет сравнение с Г.-Р.д. для звездных скоплений, поскольку все звезды скопления имеют одинаковый начальный хим. состав и образовались практически одновременно. По Г.-Р.д. скоплений различного возраста удалось установить направление Э.з. Детально эволюц. последовательности рассчитываются путем численного решения системы дифференциальных уравнений, описывающих распределение массы, плотности, темп-ры и светимости по звезде, к к-рым добавляются , законы энерговыделения и непрозрачности звездного вещества и ур-ния, описывающие изменение хим. состава звезды со временем.

Ход эволюции звезды зависит в основном от ее массы и исходного хим. состава. Определенную, но не принципиальную роль могут играть вращение звезды и ее магн. поле, однако роль этих факторов в Э.з. еще недостаточно исследована. Хим. состав звезды зависит от времени, когда она образовалась, и от ее положения в Галактике в момент образования. Звезды первого поколения сформировались из вещества, состав к-рого определялся космологич. условиями. По=видимому, в нем было примерно 70% по массе водорода, 30% гелия и ничтожная примесь дейтерия и лития. В ходе эволюции звезд первого поколения образовались тяжелые элементы (следующие за гелием), к-рые были выброшены в межзвездное пространство в результате истечения вещества из звезд или при взрывах звезд. Звезды последующих поколений сформировались уже из вещества, содержавшего до 3-4% (по массе) тяжелых элементов.

Наиболее непосредственным указанием на то, что звездообразование в Галактике происходит и в настоящее время, явл. существование массивных ярких звезд спектр. классов O и B, время жизни к-рых не может превосходить ~ 10 7 лет. Скорость звездообразования в совр. эпоху оценивается в 5 в год.

2. Образование звезд, стадия гравитационного сжатия

Согласно наиболее распространенной точке зрения, звезды образуются в результате гравитац. конденсации вещества межзвездной среды. Необходимое для этого разделение межзвездной среды на две фазы - плотные холодные облака и разреженную среду с более высокой темп-рой - может происходить под воздействием тепловой неустойчивости Рэлея-Тейлора в межзвездном магн. поле. Газово-пылевые комплексы с массой , характерным размером (10-100) пк и концентрацией частиц n ~10 2 см -3 . действительно наблюдаются благодаря излучению ими радиоволн. Сжатие (коллапс) таких облаков требует определенных условий: гравитац. частиц облака должна превосходить сумму энергии теплового движения частиц, энергии вращения облака как целого и магн. энергии облака (критерий Джинса). Если учитывается только энергия теплового движения, то с точностью до множителя порядкаединицы критерий Джинса записывается в виде: align="absmiddle" width="205" height="20">, где - масса облака, T - темп-ра газа в К, n - число частиц в 1 см 3 . При типичных для совр. межзвездных облаков темп-рах К могут сколлапсировать лишь облака с массой, не меньшей . Критерий Джинса указывает, что для образования звезд реально наблюдаемого спектра масс концентрация частиц в коллапсирующих облаках должна достигать (10 3 -10 6) см -3 , т.е. в 10-1000 раз превышать наблюдаемую в типичных облаках. Однако такие концентрации частиц могут достигаться в недрах облаков, уже начавших коллапс. Отсюда следует, что происходит путем последовательной, осуществляющейся в неск. этапов, фрагментации массивных облаков. В этой картине естественно объясняется рождение звезд группами - скоплениями. При этом все еще неясными остаются вопросы, относящиеся к тепловому балансу в облаке, полю скоростей в нем, механизму, определяющему спектр масс фрагментов.

Коллапсирующие объекты звездной массы наз. протозвездами. Коллапс сферически-симметричной невращающейся протозвезды без магн. поля включает неск. этапов. В начальный момент времени облако однородно и изотермично. Оно прозрачно для собств. излучения, поэтому коллапс идет с объемными потерями энергии, гл. обр. за счет теплового излучения пыли, к-рой передают свою кинетич. энергию частицы газа. В однородном облаке нет градиента давления и сжатие начинается в режиме свободного падения с характерным временем , где G - , - плотность облака. С началом сжатия возникает волна разрежения, перемещающаяся к центру со скоростью звука, а т.к. коллапс происходит быстрее там, где плотность выше, протозвезда разделяется на компактное ядро и протяженную оболочку, в к-рой вещество распределяется по закону . Когда концентрация частиц в ядре достигает ~ 10 11 см -3 оно становится непрозрачным для ИК-излучения пылинок. Выделяющаяся в ядре энергия медленно просачивается к поверхности благодаря лучистой теплопроводности. Темп-ра начинает повышаться почти адиабатически, это приводит к росту давления, и ядро приходит в состояние гидростатич. равновесия. Оболочка продолжает падать на ядро, и на его периферии возникает . Параметры ядра в это время слабо зависят от общей массы протозвезды: К. По мере увеличения массы ядра за счет аккреции, его темп-ра изменяется практически адиабатически, пока не достигнет 2000 К, когда начинается диссоциация молекул H 2 . В результате расхода энергии на диссоциацию, а не не увеличение кинетич. энергии частиц, значение показателя адиабаты становится меньше 4/3, изменения давления не способны компенсировать силы тяготения и ядро повторно коллапсирует (см. ). Образуется новое ядро с параметрами , окруженное ударным фронтом, на которое аккрецируют остатки первого ядра. Подобная же перестройка ядра происходит при водорода.

Дальнейший рост ядра за счет вещества оболочки продолжается до тех пор, пока все вещество упадет на звезду либо рассеется под действием или , если ядро достаточно массивно (см. ). У протозвезд с характерное время вещества оболочки t a >t кн , поэтому их светимость определяется энерговыделением сжимающихся ядер.

Звезда, состоящая из ядра и оболочки, наблюдается как ИК-источник из-за переработки излучения в оболочке (пыль оболочки, поглощая фотоны УФ-излучения ядра, излучает в ИК-диапазоне). Когда оболочка становится оптически тонкой, протозвезда начинает наблюдаться как обычный объект звездной природы. У наиболее массивных звезд оболочки сохраняются до начала термоядерного горения водорода в центре звезды. Давление излучения ограничивает массу звезд величиной, вероятно, . Если даже и образуются более массивные звезды, то они оказываются пульсационно-неустойчивыми и могут потерять значит. часть массы на стадии горения водорода в ядре. Продолжительность стадии коллапса и рассеяния протозвездной оболочки того же порядка, что и время свободного падения для родительского облака, т.е. 10 5 -10 6 лет. Освещенные ядром сгустки темного вещества остатков оболочки, ускоренные звездным ветром, отождествляются с объектами Хербига-Аро (звездообразными сгущениями, имеющими эмиссионный спектр). Звезды малых масс, когда они становятся видимыми, находятся в области Г.-Р.д., занимаемой звездами типа Т Тельца (карликовыми ), более массивные - в области, где находятся эмиссионные звезды Хербига (неправильные ранних спектр. классов с эмиссионными линиями в спектрах).

Эволюц. треки ядер протозвезд с постоянной массой на стадии гидростатич. сжатия показаны на рис. 1. У звезд малых масс в момент, когда устанавливается гидростатич. равновесие, условия в ядрах таковы, что энергия в них переносится . Расчеты показывают, что темп-ра поверхности полностью конвективной звезды почти постоянна. Радиус звезды непрерывно уменьшается, т.к. она продолжает сжиматься. При неизменной темп-ре поверхности и уменьшающемся радиусе светимость звезды должна падать и на Г.-Р.д. этой стадии эволюции соответствуют вертикальные участки треков.

По мере продолжения сжатия темп-ра в недрах звезды повышается, вещество становится более прозрачным, и у звезд с align="absmiddle" width="90" height="17"> возникают лучистые ядра, но оболочки остаются конвективными. Менее массивные звезды остаются полностью конвективными. Их светимость регулируется тонким лучистым слоем в фотосфере. Чем массивнее звезда и чем выше ее эффективная темп-ра, тем больше у нее лучистое ядро (в звездах с align="absmiddle" width="74" height="17"> лучистое ядро возникает сразу). В конце концов, практически вся звезда (за исключением поверхностной конвективной зоны у звезд с массой ) переходит в состояние лучистого равновесия, при к-ром вся выделяющаяся в ядре энергия переносится излучением.

3. Эволюция на основе ядерных реакций

При темп-ре в ядрах ~ 10 6 К начинаются перве ядерные реакции - выгорают дейтерий, литий, бор. Первичное количество этих элементов настолько мало, что их выгорание практически не выдерживает сжатия. Сжатие прекращается, когда темп-ра в центре звезды достигает ~ 10 6 К и загорается водород, т.к. энергии, выделяющейся при термоядерном горении водорода, достаточно для компенсации потерь на излучение (см. ). Однородные звезды, в ядрах к-рых горит водород, образуют на Г.-Р.д. начальную главную последовательность (НГП). Массивные звезды достигают НГП быстрее звезд малой массы, т.к. у них скорость потерь энергии на единицу массы, а следовательно, и темп эволюции выше,чем у маломассивных звезд. С момента выхода на НГП Э.з. происходит на основе ядерного горения, главные стадии к-рого суммирована в табл. Ядерное горение может происходить до образования элементов группы железа, у к-рых наибольшая среди всех ядер энергия связи. Эволюц. треки звезд на Г.-Р.д. изображены на рис. 2. Эволюция центральных значений темп-ры и плотности звезд показана на рис. 3. При К осн. источником энергии явл. реакция водородного цикла, при б"ольших T - реакции углерод-азотного (CNO) цикла (см. ). Побочным эффектом CNO-цикла явл. установление равновесных концентраций нуклидов 14 N, 12 C, 13 C - соответственно 95%, 4% и 1% по массе. Преобладание азота в слоях, где происходило горение водорода, подтверждается результатами наблюдений , у к-рых эти слои оказываются на поверхности в результате потери внеш. слоев. У звезд, в центре к-рых реализуется CNO-цикл ( align="absmiddle" width="74" height="17">), возникает конвективное ядро. Причина этого в очень сильной зависимости энерговыделения от темп-ры: . Поток же лучистой энергии ~ T 4 (см. ), следовательно, он не может перенести всю выделяющуюся энергию, и должна возникнуть конвекция, более эффективная, чем лучистый перенос. У наиболее массивных звезд конвекцией охвачено более 50% массы звезд. Значение конвективного ядра для эволюции определяется тем, что ядерное горючее равномерно истощается в области, значительно большей, чем область эффективного горения, в то время как у звезд без конвективного ядра оно вначале выгорает лишь в малой окрестности центра, где темп-ра достаточно высока. Время выгорания водорода заключено в пределах от ~ 10 10 лет для до лет для . Время всех последующих стадий ядерного горения не превосходит 10% времени горения водорода, поэтому звезды на стадии горения водорода образуют на Г.-Р.д. густонаселенную область - (ГП). У звезд с темп-ра в центре никогда не достигает значений, необходимых для загорания водорода, они неограниченно сжимаются, превращаясь в "черные" карлики. Выгорание водорода при водит к увеличению ср. молекулярной массы вещества ядра, и поэтому для поддержания гидростатич. равновесия давление в центре дожно возрастать, что влечет за собой увеличение темп-ры в центре и градиента темп-ры по звезде, а следовательно, и светимости. К увеличению светимости приводит также и уменьшение непрозрачности вещества с ростом темп-ры. Ядро сжимается для поддержания условий ядерного энерговыделения с уменьшением содержания водорода, а оболочка расширяется из-за необходимости перенести возросший поток энергии от ядра. На Г.-Р.д. звезда перемещается вправо от НГП. Уменьшение непрозрачности приводит к отмиранию конвективных ядер у всех звезд, кроме наиболее массивныых. Темп эволюции массивных звезд наиболее высок, и они первыми покидают ГП. Время жизни на ГП составляет для звезд с ок. 10 млн. лет, с ок. 70 млн. лет, а с ок. 10 млрд. лет.

Когда содержание водорода в ядре уменьшается до 1%, расширение оболочек звезд с align="absmiddle" width="66" height="17"> сменяется общим сжатием звезды, необходимым для поддержания энерговыделения. Сжатие оболочки вызывает нагрев водорода в слое, прилегающем к гелиевому ядру, до темп-ры его термоядерного горения, и возникает слоевой источник энерговыделения. У звезд с массой , у к-рых в меньшей степени зависит от темп-ры и область энерговыделения не столь сильно концентрируется к центру, стадия общего сжатия отсутствует.

Э.з. после выгорания водорода зависит от их массы. Важнейшим фактором, влияющим на ход эволюции звезд с массой , явл. вырождение газа электронов при больших плотностях. В из-за большой плотности число квантовых состояний с малой энергией ограничено в силу принципа Паули и электроны заполняют квантовые уровни с высокой энергией, значительно превышающей энергию их теплового движения. Важнейшая особенность вырожденного газа состояит в том, что его давление p зависит лишь от плотности: для нерелятивистского вырождения и для релятивистского вырождения. Давление газа электронов намного превосходит давление ионов. Отсюда следует принципиальный для Э.з. вывод: поскольку сила тяготения, действующая на единичный объем релятивистски вырожденного газа, , зависит от плотности так же, как и градиент давления , должна существовать предельная масса (см. ), такая, что при align="absmiddle" width="66" height="15"> давление электронов не может противодействовать тяготению и начинается сжатие. Предельная масса align="absmiddle" width="139" height="17">. Граница области, в к-рой газ электронов вырожден, показана на рис. 3 . У звезд малых масс вырождение играет заметную роль уже в процессе образования гелиевых ядер.

Второй фактор, определяющий Э.з. на поздних стадиях, - это нейтринные потери энергии. В звездных недрах при T ~10 8 К осн. роль в рождении играют: фотонейтринный процесс , распад квантов плазменных колебаний (плазмонов) на пары нейтрино-антинейтрино (), аннигиляция пар электрон-позитрон () и (см. ). Важнейшая особенность нейтрино состояит в том, что вещество звезды для них практически прозрачно и нейтрино беспрепятственно уносят энергию из звезды.

Гелиевое ядро, в к-ром еще не возникли условия для горения гелия, сжимается. Темп-ра в слоевом источнике, прилегающем к ядру, увеличивается, скорость горения водорода возрастает. Необходимость переноса возросшего потока энергии приводит к расширению оболочки, на что тратится часть энергии. Поскольку светимость звезды не изменяется, темп-ра ее поверхности падает, и на Г.-Р.д. звезда перемещается в область, занимаемую красными гигантамию Время перестройки звезды на два порядка меньше времени выгорания водорода в ядре, поэтому между полосой ГП и областью красных сверхгигантов мало звезд. С уменьшением темп-ры оболочки возрастает ее прозрачность, вследствие этого появляется внеш. конвективная зона и возрастает светимость звезды.

Отвод энергии из ядра посредством теплопроводности вырожденных электронов и нейтринных потерь у звезд с оттягивает момент загорания гелия. Темп-ра начинает заметно расти лишь тогда, когда ядро становится почти изотермичным. Горение 4 He определяет Э.з. с момента, когда энерговыделение превышает потери энергии путем теплопроводности и излучения нейтрино. Это же условие относится к горению всех последующих видом ядерного топлива.

Примечательная особенность звездных ядер из вырожденного газа, охлаждаемых нейтрино, - это "конвергенция" - сближение треков, к-рые характеризуют соотношение плотности и темп-ры T c в центре звезды (рис. 3). Скорость энерговыделения при сжатии ядра определяется скоростью присоединения вещества к нему через слоевой источник, к-рая зависит только от массы ядра при данном виде топлива. В ядре должен поддерживаться баланс притока и оттока энергии, поэтому в ядрах звезд устанавливается одинаковое распределение темп-ры и плотности. К моменту загорания 4 He масса ядра в зависимости от содержания тяжелых элементов. В ядрах из вырожденного газа загорание 4 He имеет характер теплового взрыва, т.к. энергия, выделяющаяся при горении, идет на увеличение энергии теплового движения электронов, но давление с ростом темп-ры почти не изменяется до тех пор, пока тепловая энергия электронов не сравняется с энергией вырожденного газа электронов. Тогда вырождение снимается и ядро быстро расширяется - происходит гелиевая вспышка. Гелиевые вспышки, вероятно, сопровождаются потерей звездного вещества. У , где массивные звезды уже давно закончили эволюцию и красные гиганты имеют массы , звезды на стадии горения гелия находятся на горизонтальной ветви Г.-Р.д.

В гелиевых ядрах звезд с align="absmiddle" width="90" height="17"> газ не вырожден, 4 He загорается спокойно, но ядра также расширяются из-за возрастания T c . У наиболее массивных звезд загорание 4 He происходит еще тогда, когда они явл. голубыми сверхгигантами. Расширение ядра ведет к уменьшению T в области водородного слоевого источника, и светимость звезды после гелиевой вспышки падает. Для поддержания теплового равновесия оболочка сжимается, и звезда уходит из области красных сверхгигантов. Когда 4 He в ядре истощается, снова начинается сжатие ядра и расширение оболочки, звезда опять становится красным сверхгигантом. Образуется слоевой источник горения 4 He, к-рый доминирует в энерговыделении. Снова возникает внеш. конвективная зона. По мере выгорания гелия и водорода толщина слоевых источников уменьшается. Тонкий слой горения гелия оказывается термически неустойчивым, т.к. при очень сильной чувствительности энерговыделения к темп-ре () теплопроводность вещества недостаточна для того, чтобы погасить тепловые возмущения в слое горения. При тепловых вспышках в слое возникает конвекция. Если она проникает в слои, богатые водородом, то в результате медленного процесса (s -процесса, см. ) синтезируются элементы с атомными массами от 22 Ne до 209 B.

Давление излучения на пыль и молекулы, образующиеся в холодных протяженных оболочках красных сверхгигантов, приводит к непрерывной потере вещества со скоростью до в год . Непрерывная потеря массы может дополнятся потерями, обусловленными неустойчивостью слоевого горения или пульсациями, что может привести к выбросу одной или неск. оболочек. Когда количество вещества над углеродно-кислородным ядром становится меньшим нек-рого предела, оболочка для поддержания темп-ры в слоях горения вынуждена сжиматься до тех пор, пока сжатие способно поддерживать горение; звезда на Г.-Р.д. смещается почти горизонтально влево. На этом этапе неустойчивость слоев горения также может приводить к расширению оболочки и потере вещества. Пока звезда достаточно горяча, она наблюдается как ядро с одной или неск. оболочками. Когда слоевые источники смещаются к поверхности звезды настолько, что темп-ра в них становится ниже необходимой для ядерного горения, звезда охлаждается, превращаясь в белый карлик с , излучающий за счет расхода тепловой энергии ионного компонента его вещества. Характерное время охлаждения белых карликов ~ 10 9 лет. Нижняя граница масс одиночных звезд, превращающихся в белые карлики, неясна, она оценивается в 3-6 . У звезд с электронный газ вырождается на стадии роста углеродно-кислородных (C,O-) ядер звезд. Как и в гелиевых ядрах звезд, из-за нейтринных потерь энергии происходит "конвергенция" условий в центре и к моменту загорания углерода в C,O-ядре . Загорание 12 C при таких условиях, скорее всего, имеет характер взрыва и приводит к полному разрушению звезды. Полного разрушения может не произойти, если . Такая плотность достижима, когда скорость роста ядра определяется аккрецией вещества спутника в тесной двойной системе.

Наше Солнце светит уже более 4,5 млрд. лет. При этом оно постоянно расходует водород. Абсолютно ясно, что как бы не велики были его запасы, но когда-то они будут исчерпаны. И что же произойдёт со светилом? На этот вопрос есть ответ. Жизненный цикл звезды можно изучить по другим аналогичным космическим образованиям. Ведь в космосе существуют настоящие патриархи, возраст которых составляет 9-10 млрд. лет. А есть совсем юные звёздочки. Им от роду не более нескольких десятков млн. лет.

Следовательно, наблюдая за состояние различных звёзд, которыми "усыпана" Вселенная, можно понять, как они себя ведут с течением времени. Здесь можно провести аналогию с наблюдателем-инопланетянином. Он прилетел на Землю и стал изучать людей: детей, взрослых, стариков. Таким образом, за совсем короткий период времени он понял, какие изменения происходят с людьми в течение жизни.

В настоящее время Солнце является жёлтым карликом - 1
Пройдут миллиарды лет, и оно станет красным гигантом - 2
А затем превратится в белого карлика - 3

Поэтому можно со всей уверенностью сказать, что когда запасы водорода в центральной части Солнца будут исчерпаны, термоядерная реакция не прекратится . Зона, где будет продолжаться этот процесс, начнёт сдвигаться к поверхности нашего светила. Но при этом силы гравитации уже не смогут влиять на давление, которое образуется в результате термоядерной реакции.

Как следствие, звезда начнёт разрастаться в размерах и постепенно превратится в красного гиганта . Это космический объект поздней стадии эволюции. Но таковым же он бывает и на ранней стадии во время звёздообразования. Только во втором случае красный гигант сжимается и превращается в звезду главной последовательности . То есть в такую, в которой идёт реакция синтеза гелия из водорода. Одним словом, с чего жизненный цикл звезды начинается, тем и заканчивается.

Наше Солнце увеличится в размерах настолько, что поглотит ближайшие планеты. Это Меркурий , Венера и Земля . Но не надо пугаться. Умирать светило начнёт через несколько млрд. лет. За это время сменятся десятки, а может и сотни цивилизаций. Человек ещё не раз возьмёт в руки дубину, а по прошествию тысячелетий опять сядет за компьютер. Это обычная цикличность, на которой базируется вся Вселенная.

Но превращение в красного гиганта ещё не означает конец. Термоядерная реакция будет отбрасывать в космос внешнюю оболочку. А в центре будет оставаться лишённое энергии гелиевое ядро. Под действием сил тяготения оно будет сжиматься и, в конце концов, превратится в чрезвычайно плотное с большой массой космическое образование. Такие остатки потухших и медленно остывающих звёзд называются белыми карликами .

У нашего белого карлика радиус будет в 100 раз меньше радиуса Солнца, а светимость уменьшится в 10 тыс. раз. При этом масса будет сравнимой с нынешней солнечной, а плотность будет больше в миллион раз. Таких белых карликов в нашей Галактике очень много. Их численность составляет 10% от общего числа звёзд.

Надо отметить, что белые карлики бывают водородными и гелиевыми. Но мы не будем лезть в дебри, а только заметим, что при сильном сжатии может наступить гравитационный коллапс. А это чревато колоссальным взрывом. При этом наблюдается вспышка сверхновой звезды. Термин "сверхновый" характеризует не возраст, а яркость вспышки. Просто белого карлика долго не было видно в космической бездне, и вдруг появилось яркое свечение.

Большая часть взорвавшейся сверхновой звезды разлетается в пространстве с огромной скоростью. А оставшаяся центральная часть сжимается в ещё более плотное образование и называется нейтронной звездой . Это конечный продукт звёздной эволюции. Его масса сравнима с солнечной, а радиус достигает всего лишь нескольких десятков км. Один куб. см нейтронной звезды может весить миллионы тонн. В космосе таких образований довольно много. Их количество примерно в тысячу раз меньше обычных солнц, которыми усыпано ночное небо Земли.

Надо сказать, что жизненный цикл звезды напрямую связан с её массой. Если она соответствует массе нашего Солнца или меньше её, то в конце жизни появляется белый карлик. Однако существуют светила, которые в десятки и сотни раз больше Солнца.

Когда такие гиганты сжимаются в процессе старения, то они так искажают пространство и время, что вместо белого карлика появляется чёрная дыра . Её гравитационное притяжение так велико, что его не могут преодолеть даже те объекты, которые движутся со скоростью света. Размеры дыры характеризует гравитационный радиус . Это радиус сферы, ограниченной горизонтом событий . Он представляет собой пространственно-временной предел. Любое космическое тело, преодолев его, исчезает навсегда и никогда не возвращается обратно.

О чёрных дырах существует много теорий. Все они базируются на теории гравитации, так как именно гравитация является одной из важнейших сил Вселенной. А основное её качество - универсальность . По-крайней мере, в наши дни не обнаружено ни одного космического объекта, у которого бы отсутствовало гравитационное взаимодействие.

Есть предположение, что через чёрную дыру можно попасть в параллельный мир. То есть это канал в другое измерение. Всё возможно, но любое утверждение требует практических доказательств. Однако пока ещё никто из смертных не смог осуществить подобный эксперимент.

Таким образом, жизненный цикл звезды состоит из нескольких стадий. В каждой из них светило выступает в определённом качестве, которое кардинально отличается от предыдущих и будущих. В этом и заключается неповторимость и таинственность космического пространства. Знакомясь с ним, невольно начинаешь думать, что человек тоже проходит несколько стадий в своём развитии. А та оболочка, в которой мы существуем сейчас, является лишь переходным этапом к какому-то иному состоянию. Но это умозаключение опять же требует практического подтверждения .

Рассмотрим кратко основные этапы эволюции звезд.

Изменение физических характеристик, внутреннего строения и химического состава звезды со временем.

Фрагментация вещества. .

Предполагается, что звезды образуются при гравитационном сжатии фрагментов газопылевого облака. Так, местами звездообразования могут являться так называемые глобулы.

Глобула - плотное непрозрачное молекулярно-пылевое (газопылевое) межзвездное облако, которое наблюдается на фоне светящихся облаков газа и пыли в виде темного круглого образования. Состоит преимущественно из молекулярного водорода (H 2) и гелия (He ) с примесью молекул других газов и твердых межзвездных пылинок. Температура газа в глобуле (в основном, температура молекулярного водорода) T ≈ 10 ÷ 50К, средняя плотность n ~ 10 5 частиц/см 3 , что на несколько порядков больше, нежели в самых плотных обычных газопылевых облаках, диаметр D ~ 0,1 ÷ 1 . Масса глобул М ≤ 10 2 × M ⊙ . В некоторых глобулах наблюдаются молодые типа T Тельца.

Облако сжимается под действием собственной гравитации из-за гравитационной неустойчивости, которая может возникнуть либо самопроизвольно, либо как результат взаимодействия облака с ударной волной от сверхзвукового потока звездного ветра от находящегося неподалеку другого источника звездообразования. Возможны и другие причины возникновения гравитационной неустойчивости.

Теоретические исследования показывают, что в условиях, которые существуют в обычных молекулярных облаках (T ≈ 10 ÷ 30К и n ~ 10 2 частиц/см 3), первоначальное может происходить в объемах облака с массой М ≥ 10 3 × M ⊙ . В таком сжимающемся облаке возможен дальнейший распад на менее массивные фрагменты, каждый из которых будет также сжиматься под действием собственной гравитации. Наблюдения показывают, что в Галактике в процессе звездообразования рождается не одна , а группа звезд с разными массами, например, рассеянное звездное скопление.

При сжатии в центральных районах облака плотность возрастает, в результате чего наступает момент, когда вещество этой части облака становится непрозрачным к собственному излучению. В недрах облака возникает устойчивое плотное сгущение, которое астрономы называют ой.

Фрагментация вещества – распад молекулярно-пылевого облака на более ме ие части, дальнейшее которых приводит к появлению .

– астрономический объект, находящийся в стадии , из которого спустя некоторое время (для солнечной массы это время T ~ 10 8 лет) образуется нормальная .

При дальнейшем падении вещества из газовой оболочки на ядро (аккреция) масса последнего, а следовательно, температура и увеличиваются настолько, что газовое и лучистое давление сравниваются с силами . Сжатие ядра останавливается. Формирующаяся окружена непрозрачной для оптического излучения газопылевой оболочкой, пропускающей наружу лишь инфракрасное и более длинноволновое излучение. Такой объект ( -кокон) наблюдается как мощный источник радио и инфракрасного излучений.

При дальнейшем росте массы и температуры ядра световое давление останавливает аккрецию, а остатки оболочки рассеиваются в космическом пространстве. Появляется молодая , физические характеристики которой зависят от ее массы и начального химического состава.

Основным источником энергии рождающейся звезды является, по-видимому, энергия, высвобождающаяся при гравитационном сжатии. Это предположение следует из теоремы вириала: в стационарной системе сумма потенциальной энергии E п всех членов системы и удвоенной кинетической энергии 2 E к этих членов равна нулю:

E п + 2 E к = 0. (39)

Теорема справедлива для систем частиц, движущихся в ограниченной области пространства под действием сил, величина которых обратно пропорциональна квадрату расстояния между частицами. Отсюда следует, что тепловая (кинетическая) энергия равна половине гравитационной (потенциальной) энергии. При сжатии звезды полная энергия звезды уменьшается, при этом уменьшается гравитационная энергия: половина изменения гравитационной энергии уходит от звезды через излучение, за счет второй половины увеличивается тепловая энергия звезды.

Молодые звёзды малой массы (до трёх масс Солнца), находящиеся на подходе к главной последовательности, полностью конвективны; процесс конвекции охватывает все области светила. Это ещё по сути протозвёзды, в центре которых только-только начинаются ядерные реакции, и всё излучение происходит, в основном, из-за . Пока ещё не установлено, звезды убывает при неизменной эффективной температуре. На диаграмме Герцшпрунга-Рассела такие звёзды формируют почти вертикальный трек, называемый треком Хаяши. По мере замедления сжатия молодая приближается к главной последовательности.

По мере сжатия звезды начинает увеличиваться давление вырожденного электронного газа и при достижении определённого радиуса звезды сжатие останавливается, что приводит к остановке дальнейшего роста центральной температуры, вызываемого сжатием, а затем и к её понижению. Для звёзд меньше 0,0767 масс Солнца этого не происходит: выделяющейся в ходе ядерных реакций энергии никогда не хватит, чтобы уравновесить внутреннее давление и . Такие «недозвёзды» излучают энергии больше, чем образуется в ходе ядерных реакций, и относятся к так называемым ; их судьба - это постоянное сжатие, пока давление вырожденного газа не остановит его, и, затем, постепенное остывание с прекращением всех начавшихся ядерных реакций .

Молодые звёзды промежуточной массы (от 2 до 8 массы Солнца) качественно эволюционируют точно так же, как и их меньшие сестры, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Звезды с массой больше 8 солнечных масс уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии и смогли достичь такой скорости ядерных реакций, чтобы они компенсировали потери энергии на излучение, пока накапливалась масса ядра. У этих звёзд истечение массы и настолько велики, что не просто останавливают коллапсирование ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, отта ивает их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака.

Главная последовательность

Температура звезды растет, пока в центральных областях не достигнет значений, достаточных для включения термоядерных реакций, которые затем становятся главным источником энергии звезды. Для массивных звезд (M > 1 ÷ 2 × M ⊙ ) – это «сгорание» водорода в углеродном цикле; для звезд с массой, равной или меньшей массы Солнца, энергия выделяется в протон-протонной реакции. переходит в стадию равновесия и занимает свое место на главной последовательности диаграммы Герцшпрунга-Рессела: у звезды большой массы температура в ядре очень высокая (T ≥ 3 × 10 7 K ), выработка энергии весьма интенсивна, – на главной последовательности занимает место выше Солнца в области ранних (O … A , (F )); у звезды небольшой массы температура в ядре сравнительно невысока (T ≤ 1,5 × 10 7 K ), выработка энергии не столь интенсивна, – на главной последовательности занимает место рядом или ниже Солнца в области поздних ((F ), G , K , M ).

На главной последовательности проводит до 90% времени, отпущенного природой на ее существование. Время нахождения звезды на стадии главной последовательности также зависит от массы. Так, с массой M ≈ 10 ÷ 20 × M ⊙ O или B находится в стадии главной последовательности около 10 7 лет, в то время как красный карлик K 5 с массой M ≈ 0,5 × M ⊙ находится в стадии главной последовательности около 10 11 лет, то есть время, сравнимое с возрастом Галактики. Массивные горячие звезды быстро переходят в следующие этапы эволюции, холодные карлики находятся в стадии главной последовательности все время существования Галактики. Можно предположить, что красные карлики являются основным типом населения Галактики.

Красный гигант (сверхгигант).

Быстрое выгорание водорода в центральных районах массивных звезд приводит к появлению у них гелиевого ядра. При доле массы водорода в несколько процентов в ядре практически полностью прекращается углеродная реакция превращения водорода в гелий. Ядро сжимается, что приводит к увеличению его температуры. В результате разогрева, вызванного гравитационным сжатием гелиевого ядра, «загорается» водород и начинается энерговыделение в тонком слое, расположенном между ядром и протяженной оболочкой звезды. Оболочка расширяется, радиус звезды увеличивается, эффективная температура уменьшается, растет. «уходит» с главной последовательности и переходит в следующую стадию эволюции – в стадию красного гиганта или, если масса звезды M > 10 × M ⊙ , в стадию красного сверхгиганта.

С ростом температуры и плотности в ядре начинает «гореть» гелий. При T ~ 2 × 10 8 K и r ~ 10 3 ¸ 10 4 г/см 3 начинается термоядерная реакция, которая называется тройным a -процессом: из трех a -частиц (ядер гелия 4 He ) образуется одно устойчивое ядро углерода 12 C . При массе ядра звезды M < 1,4 × M ⊙ тройной a -процесс приводит к взрывному характеру энерговыделения - гелиевой вспышке, которая для конкретной звезды может повторяться неоднократно.

В центральных областях массивных звезд, находящихся в стадии гиганта или сверхгиганта, увеличение температуры приводит к последовательному образованию углеродного, углеродно-кислородного и кислородного ядер. После выгорания углерода наступают реакции, в результате которых образуются более тяжелые химические элементы, возможно и ядра железа. Дальнейшая эволюция массивной звезды может привести к сбросу оболочки, вспышке звезды как Новой или , с последующим образованием объектов, которые являются заключительной стадией эволюции звезд: белого карлика, нейтронной звезды или черной дыры.

Завершающая стадия эволюции – стадия эволюции всех нормальных звезд после исчерпания этими ми термоядерного горючего; прекращение термоядерных реакций как источника энергии звезды; переход звезды в зависимости от ее массы в стадию белого карлика, или черной дыры.

Белые карлики - последняя стадия эволюции всех нормальных звезд с массой M < 3 ÷ 5 × M ⊙ после исчерпания этими ми термоядерного горючего. Пройдя стадию красного гиганта (или субгиганта), такая сбрасывает оболочку и оголяет ядро, которое, остывая, и становится белым карликом. Небольшой радиус (R б.к ~ 10 -2 × R ⊙ ) и белый или бело-голубой цвет (T б.к ~ 10 4 К) определили название этого класса астрономических объектов. Масса белого карлика всегда меньше 1,4 × M ⊙ - доказано, что белые карлики с большими массами существовать не могут. При массе, сравнимой с массой Солнца, и размерах, сравнимых с размерами больших планет Солнечной системы, белые карлики обладают огромной средней плотностью: ρ б.к ~ 10 6 г/см 3 , то есть гирька объемом 1 см 3 вещества белого карлика весит тонну! Ускорение свободного падения на поверхности g б.к ~ 10 8 см/с 2 (сравни с ускорением на поверхности Земли - g з ≈ 980 см/с 2). При такой гравитационной нагрузке на внутренние области звезды равновесное состояние белого карлика поддерживается давлением вырожденного газа (в основном, вырожденного электронного газа, так как вклад ионной компоненты мал). Напомним, что вырожденным называется газ, в котором отсутствует максвелловское распределение частиц по скоростям. В таком газе при определенных значениях температуры и плотности число частиц (электронов), имеющих любую скорость в пределах от v = 0 до v = v max , будет одинаковым. v max определяется плотностью и температурой газа. При массе белого карлика M б.к > 1,4 × M ⊙ максимальная скорость электронов в газе сравнима со скоростью света, вырожденный газ становится релятивистским и его давление уже неспособно противостоять гравитационному сжатию. Радиус карлика стремится к нулю - “схлопывается” в точку.

Тонкие горячие атмосферы белых карликов состоят либо из водорода, при этом других элементов в атмосфере практически не обнаруживается; либо из гелия, при этом водорода в атмосфере в сотни тысяч раз меньше, нежели в атмосферах нормальных звезд. По виду спектра белые карлики относятся к спектральным классам O, B, A, F. Чтобы “отличить” белые карлики от нормальных звезд, перед обозначением ставится буква D (DOVII, DBVII и т.д. D - первая буква в английском слове Degenerate - вырожденный). Источником излучения белого карлика является запас тепловой энергии, который белый карлик получил, будучи ядром звезды-родительницы. Многие белые карлики получили в наследство от родительницы и сильное магнитное поле, напряженность которого H ~ 10 8 Э. Полагают, что число белых карликов составляет около 10% от общего числа звезд Галактики.

На рис. 15 приведена фотография Сириуса - ярчайшей звезды неба (α Большого Пса; m v = -1 m ,46; класс A1V). Видимый на снимке диск является следствием фотографической иррадиации и дифракции света на объективе телескопа, то есть диск самой звезды на фотографии не разрешается. Лучи, идущие от фотографического диска Сириуса, - следы искажения волнового фронта светового потока на элементах оптики телескопа. Сириус находится на расстоянии 2,64 от Солнца, свет от Сириуса идет до Земли 8,6 лет - таким образом, это одна из самых близких к Солнцу звезд. Сириус в 2,2 раза массивнее Солнца; его M v = +1 m ,43, то есть наш сосед излучает энергии в 23 раза больше, нежели Солнце.

Рисунок 15.

Уникальность фотографии заключается в том, что вместе с изображением Сириуса удалось получить изображение его спутника – спутник яркой точкой “светится” слева от Сириуса. Сириус – телескопически : сам Сириус обозначается буквой А, а его спутник буквой В. Видимая звездная величина Сириуса В m v = +8 m ,43, то есть он почти в 10 000 раз слабее Сириуса А. Масса Сириуса В почти точно равна массе Солнца, радиус около 0,01 радиуса Солнца, температура поверхности около 12000К, однако излучает Сириус В в 400 раз меньше Солнца. Сириус В - типичный белый карлик. Более того, это первый белый карлик, обнаруженный, кстати, Альвеном Кларком в 1862 г при визуальном наблюдении в телескоп.

Сириус А и Сириус В обращаются вокруг общего с периодом 50 лет; расстояние между компонентами А и В всего 20 а.е.

По меткому замечанию В.М.Липунова, ““вызревают” внутри массивных звезд (с массой более 10 × M ⊙ )”. Ядра звезд, эволюционирующих в нейтронную звезду, имеют 1,4 × M ⊙ ≤ M ≤ 3 × M ⊙ ; после того, как иссякнут источники термоядерных реакций и -родительница вспышкой сбросит значительную часть вещества, эти ядра станут самостоятельными объектами звездного мира, обладающими весьма специфическими характеристиками. Сжатие ядра звезды-родительницы останавливается при плотности, сравнимой с ядерной (ρ н . з ~ 10 14 ÷ 10 15 г/см 3). При таких массе и плотности радиус родившейся всего 10 состоит из трех слоев. Наружный слой (или внешняя кора) образован кристаллической решеткой из атомных ядер железа (Fe ) с возможной небольшой примесью атомных ядер других металлов; толщина внешней коры всего около 600 м при радиусе 10 км. Под внешней корой находится еще одна внутренняя твердая кора, состоящая из атомов железа (Fe ), но эти атомы переобогащены нейтронами. Толщина этой коры 2 км. Внутренняя кора граничит с жидким нейтронным ядром, физические процессы в котором определяются замечательными свойствами нейтронной жидкости - сверхтекучестью и, при наличии в ней свободных электронов и протонов, сверхпроводимостью. Возможно, что в самом центре вещество может содержать мезоны и гипероны.

Быстро вращаются вокруг оси - от одного до сотен оборотов в секунду. Такое вращение при наличии магнитного поля (H ~ 10 13 ÷ 10 15 Э) часто приводит к наблюдаемому эффекту пульсации излучения звезды в разных диапазонах электромагнитных волн. Один из таких пульсаров мы видели внутри Крабовидной туманности.

Общее число скорость вращения уже недостаточна для эжекции частиц, поэтому такая не может быть радиопульсаром. Однако она всё ещё велика, и захваченная магнитным полем окружающая нейтронную звезду не может упасть, то есть аккреция вещества не происходи.

Аккретор (рентгеновский пульсар). Скорость вращения снижается до такой степени, что веществу теперь ничего не мешает падать на такую нейтронную звезду. Плазма, падая, движется по линиям магнитного поля и ударяется о твёрдую поверхность в районе полюсов , разогреваясь до десятков миллионов градусов. Вещество, нагретое до столь высоких температур, светится в рентгеновском диапазоне. Область, в которой происходит сто новение падающего вещества с поверхностью звезды, очень мала - всего около 100 метров. Это горячее пятно из-за вращения звезды периодически пропадает из вида, что наблюдатель воспринимает как пульсации. Такие объекты называются рентгеновскими пульсарами.

Георотатор. Скорость вращения таких нейтронных звёзд мала и не препятствует аккреции. Но размеры магнитосферы таковы, что плазма останавливается магнитным полем раньше, чем она будет захвачена гравитацией.

Если является компонентой тесной двойной системы, то происходит “перекачка” вещества от нормальной звезды (второй компоненты) на нейтронную. Масса может превысить критическую (M > 3 × M ⊙ ), тогда нарушается гравитационная устойчивость звезды, уже ничто не может противостоять гравитационному сжатию, и “уходит” под свой гравитационный радиус

r g = 2 × G × M/c 2 , (40)

превращаясь в “черную дыру“. В приведенной формуле для r g: M - масса звезды, c - скорость света, G - гравитационная постоянная.

Черная дыра - объект, поле тяготения которого настолько велико, что ни частица, ни фотон, ни любое материальное тело не могут достигнуть второй космической скорости и вырваться во внешнее пространство.

Черная дыра является сингулярным объектом в том смысле, что характер протекания физических процессов внутри ее пока недоступен теоретическому описанию. Существование черных дыр следует из теоретических соображений, реально они могут находиться в центральных районах шаровых скоплений, квазаров, гигантских галактик, в том числе, и в центре Нашей галактики.

Эволюция звезд – это изменение со временем физических характеристик, внутреннего строения и химического состава звезд. Современная теория эволюции звезд способна объяснить общий ход развития звезд в удовлетворительном согласии с данными астрономических наблюдений. Ход эволюции звезды зависит от ее массы и исходного химического состава. Звезды первого поколения сформировались из вещества, состав которого определялся космологическими условиями (около 70% водорода, 30% гелия, ничтожная примесь дейтерия и лития). В ходе эволюции звезд первого поколения образовались тяжелые элементы, которые были выброшены в межзвездное пространство в результате истечения вещества из звезд или при взрывах звезд. Звезды последующих поколений сформировались из вещества, содержащего 3 – 4% тяжелых элементов.

Рождение звезды – это образование объекта, излучение которого поддерживается за счет собственных источников энергии. Процесс звездообразования продолжается непрерывно, он происходит и в настоящее время.

Для объяснения структуры мегамира наиболее важным является гравитационное взаимодействие. В газопылевых туманностях под действием сил гравитации происходит формирование неустойчивых неоднородностей, благодаря чему диффузная материя распадается на ряд сгущений. Если такие сгущения сохраняются достаточно долго, то с течением времени они превращаются в звезды. Важно отметить, что происходит процесс рождения не отдельной звезды, а звездных ассоциаций. Образовавшиеся газовые тела притягиваются друг к другу, но не обязательно объединяются в одно громадное тело. Они, как правило, начинают вращаться относительно друг друга, и центробежные силы этого движения противодействуют силам притяжения, ведущим к дальнейшей концентрации.

К молодым относятся звезды, которые находятся еще в стадии первоначального гравитационного сжатия. Температура в центре таких звезд еще недостаточна для протекания термоядерных реакций. Свечение звезд происходит только за счет превращения гравитационной энергии в теплоту. Гравитационное сжатие – первый этап эволюции звезд. Оно приводит к разогреву центральной зоны звезды до температуры начала термоядерной реакции (10 – 15 млн К) – превращения водорода в гелий.

Огромная энергия, излучаемая звездами, образуется в результате ядерных процессов, происходящих внутри звезд. Энергия, образующаяся внутри звезды, позволяет ей излучать свет и тепло в течение миллионов и миллиардов лет. Впервые предположение о том, что источником энергии звезд являются термоядерные реакции синтеза гелия из водорода, выдвинул в 1920 г. английский астрофизик А.С.Эддингтон. В недрах звезд возможны два типа термоядерных реакций с участием водорода, называемые водородным (протон-протонным) и углеродным (углеродно-азотным) циклами. В первом случае для протекания реакции требуется только водород, во втором необходимо еще наличие углерода, служащего катализатором. Исходным веществом служат протоны, из которых в результате ядерного синтеза образуются ядра гелия .


Поскольку при превращении четырех протонов в ядро гелия рождаются два нейтрино, в недрах Солнца ежесекундно генерируются 1,8∙10 38 нейтрино. Нейтрино слабо взаимодействует с веществом и обладает большой проникающей способностью. Пройдя сквозь огромную толщу солнечного вещества, нейтрино сохраняют всю ту информацию, которую они получили в термоядерных реакциях в недрах Солнца. Плотность потока солнечных нейтрино, падающих на поверхность Земли, равна 6,6∙10 10 нейтрино на 1 см 2 в 1 с. Измерение потока нейтрино, падающих на Землю, позволяет судить о процессах, происходящих внутри Солнца.

Таким образом, источником энергии у большинства звезд являются водородные термоядерные реакции в центральной зоне звезды. В результате термоядерной реакции возникает поток энергии, направленный наружу, в виде излучения в широком интервале частот (длин волн). Взаимодействие между излучением и веществом приводит к установившемуся равновесию: давление направленной наружу радиации уравновешивается давлением гравитации. Дальнейшее сжатие звезды прекращается, пока в центре производится достаточное количество энергии. Это состояние довольно устойчиво, и размер звезды остается постоянным. Водород – главная составная часть космического вещества и важнейший вид ядерного горючего. Запасов водорода звезде хватает на миллиарды лет. Это объясняет, почему звезды устойчивы столь длительное время. До тех пор, пока в центральной зоне весь водород не выгорит, свойства звезды изменяются мало.

Поле выгорания водорода в центральной зоне у звезды образуется геливое ядро. Водородные реакции продолжают протекать, но только в тонком слое около поверхности ядра. Ядерные реакции перемещаются на периферию звезды. Структура звезды на этой стадии описывается моделями со слоевым источником энергии. Выгоревшее ядро начинает сжиматься, а внешняя оболочка – расширяться. Оболочка разбухает до колоссальных размеров, внешняя температура становится низкой. Звезда переходит в стадию красного гиганта. С этого момента жизнь звезды начинает клониться к закату. Красные гиганты отличаются низкими температурами и огромными размерами (от 10 до 1000 R c). Средняя плотность вещества в них не достигает и 0,001 г/см 3 . Их светимость в сотни раз превышает светимость Солнца, но температура значительно ниже (около 3000 – 4000 К).

Полагают, что наше Солнце при переходе в стадию красного гиганта может увеличиться настолько, что заполнит орбиту Меркурия. Правда, Солнце станет красным гигантом через 8 млрд лет.

Для красного гиганта характерна низкая внешняя температура, но очень высокая внутренняя. С ее повышением в термоядерные реакции включаются всё более тяжелые ядра. При температуре 150 млн К начинаются гелиевые реакции, которые являются не только источником энергии, но в ходе них осуществляется синтез более тяжелых химических элементов. После образования углерода в гелиевом ядре звезды возможны следующие реакции:

Следует отметить, что синтез очередного более тяжелого ядра требует все более и более высоких энергий. К моменту образования магния весь гелий в ядре звезды истощается, и, чтобы стали возможными дальнейшие ядерные реакции, необходимо новое сжатие звезды и повышение ее температуры. Однако это возможно не для всех звезд, лишь для достаточно больших, масса которых превышает массу Солнца более чем в 1,4 раза (так называемый предел Чандрасекара). В звездах меньшей массы реакции заканчиваются на стадии образования магния. В звездах, масса которых превышает предел Чандрасекара, за счет гравитационного сжатия температура повышается до 2 млрд градусов, реакции продолжаются, образуя более тяжелые элементы – вплоть до железа. Элементы тяжелее железа образуются при взрывах звезд.

В результате роста давления, пульсаций и других процессов красный гигант непрерывно теряет вещество, которое выбрасывается в межзвездное пространство в виде звездного ветра. Когда внутренние термоядерные источники энергии полностью истощаются, дальнейшая судьба звезды зависит от ее массы.

При массе меньше 1,4 массы Солнца звезда переходит в стационарное состояние с очень большой плотностью (сотни тонн на 1 см 3). Такие звезды называются белыми карликами. В процессе превращения красного гиганта в белый карлик заезда может сбросить свои наружные слои, как легкую оболочку, обнажив при этом ядро. Газовая оболочка ярко светится под действием мощного излучения звезды. Так образуются планетарные туманности. При высоких плотностях вещества внутри белого карлика электронные оболочки атомов разрушаются, и вещество звезды представляет собой электронно-ядерную плазму, причем ее электронная составляющая представляет собой вырожденный электронный газ. Белые карлики находятся в равновесном состоянии за счет равенства сил между гравитацией (фактор сжатия) и давлением вырожденного газа в недрах звезды (фактор расширения). Белые карлики могут существовать миллиарды лет.

Тепловые запасы звезды постепенно истощаются, звезда медленно охлаждается, что сопровождается выбросами оболочки звезд в межзвездное пространство. Звезда постепенно изменяет свой цвет от белого к желтому, затем к красному, наконец, она перестает излучать, становится маленьким безжизненным объектом, мертвой холодной звездой, размеры которой меньше размеров Земли, а масса сравнима с массой Солнца. Плотность такой звезды в миллиарды раз больше плотности воды. Такие звезды называются черными карликами. Так заканчивают свое существование большинство звезд.

При массе звезды более 1,4 массы Солнца стационарное состояние звезды без внутренних источников энергии становится невозможным, т.к. давление внутри звезды не может уравновесить силу тяготения. Начинается гравитационный коллапс – сжатие вещества к центру звезды под действием гравитационных сил.

Если отталкивание частиц и другие причины останавливают коллапс, то происходит мощный взрыв ─ вспышка сверхновой звезды с выбросом значительной части вещества в окружающее пространство и образованием газовых туманностей. Название было предложено Ф.Цвикки в 1934 г. Взрыв сверхновой является одним из промежуточных этапов эволюции звезд перед превращением их в белые карлики, нейтронные звезды или черные дыры. При взрыве выделяется энергия 10 43 ─ 10 44 Дж при мощности излучения 10 34 Вт. При этом блеск звезды увеличивается на десятки звездных величин за несколько суток. Светимость сверхновой может превосходить светимость всей галактики, в которой она вспыхнула.

Газовая туманность, образующаяся при взрыве сверхновой, состоит частично из выброшенных взрывом верхних слоев звезды, а частично – из межзвездного вещества, уплотненного и разогретого разлетающимися продуктами взрыва. Наиболее известной газовой туманностью является Крабовидная туманность в созвездии Тельца – остаток сверхновой 1054 г. Молодые остатки сверхновых расширяются со скоростями 10-20 тыс. км/с. Столкновение расширяющейся оболочки с неподвижным межзвездным газом порождает ударную волну, в которой газ нагревается до миллионов Кельвин и становится источником рентгеновского излучения. Распространение ударной волны в газе приводит к появлению быстрых заряженных частиц (космических лучей), которые, двигаясь в сжатом и усиленном этой же волной межзвездном магнитном поле, излучают в радиодиапазоне.

Астрономы зафиксировали вспышки сверхновых в 1054, 1572, 1604 годах. В 1885 году появление сверхновой было отмечено в туманности Андромеды. Ее блеск превышал блеск всей Галактики и оказался в 4 млрд раз более интенсивным, чем блеск Солнца.

Уже к 1980 г. было открыто более 500 вспышек сверхновых звезд, но ни одна не наблюдалась в нашей Галактике. Астрофизики подсчитали, что в нашей Галактике сверхновые звезды вспыхивают с периодом 10 млн лет в непосредственной близости от Солнца. В среднем в Метагалактике происходит вспышка сверхновой каждые 30 лет.

Дозы космического излучения на Земле при этом могут превышать нормальный уровень в 7000 раз. Это приведет к серьезнейшим мутациям в живых организмах на нашей планете. Некоторые ученые так объясняют внезапную гибель динозавров.

Часть массы взорвавшейся сверхновой звезды может остаться в виде сверхплотного тела – нейтронной звезды или черной дыры. Масса нейтронных звезд составляет (1,4 – 3)М с, диаметр – около 10 км. Плотность нейтронной звезды очень велика, выше плотности атомных ядер ─ 10 15 г/см 3 . При нарастании сжатия и давления становится возможной реакция поглощения электронов протонами В итоге все вещество звезды будет состоять из нейтронов. Нейтронизация звезды сопровождается мощной вспышкой нейтринного излучения. При вспышке сверхновой SN1987A продолжительность нейтринной вспышки составляла 10 с, а энергия, унесенная всеми нейтрино, достигала 3∙10 46 Дж. Температура нейтронной звезды достигает 1 млрд К. Нейтронные звезды очень быстро остывают, светимость их слабеет. Зато они интенсивно излучают радиоволны в узком конусе по направлению магнитной оси. Для звезд, у которых магнитная ось не совпадает с осью вращения, характерно радиоизлучение в виде повторяющихся импульсов. Поэтому нейтронные звезды называют пульсарами. Первые пульсары были открыты в 1967 г. Частота пульсаций излучения, определяемая скоростью вращения пульсара, от 2 до 200 Гц, что указывает на их малые размеры. Например, пульсар в Крабовидной туманности имеет период испускания импульсов 0,03 с. В настоящее время известны сотни нейтронных звезд. Нейтронная звезда может появиться в результате так называемого «тихого коллапса». Если белый карлик входит в двойную систему из близко расположенных звезд, то возникает явление аккреции, когда вещество со звезды-соседа перетекает на белый карлик. Масса белого карлика растет и в определенный момент превосходит предел Чандрасекара. Белый карлик превращается в нейтронную звезду.

Если конечная масса белого карлика превышает 3 массы Солнца, то вырожденное нейтронное состояние неустойчиво, и гравитационное сжатие продолжается до образования объекта, называемого черной дырой. Термин «черная дыра» введен Дж. Уилером в 1968 г. Однако представление о подобных объектах возникло на несколько столетий раньше, после открытия И. Ньютоном в 1687 г. закона всемирного тяготения. В 1783 г. Дж. Митчелл предположил, что в природе должны существовать темные звезды, гравитационное поле которых столь сильно, что свет не может вырваться из них наружу. В 1798 г. такая же идея была высказана П. Лапласом. В 1916 г. физик Шварцшильд, решая уравнения Эйнштейна, пришел к выводу о возможности существования объектов с необычными свойствами, позже названные черными дырами. Черная дыра – область пространства, в которой поле тяготения настолько сильно, что вторая космическая скорость для находящихся в этой области тел должна превышать скорость света, т.е. из черной дыры ничто не может вылететь – ни частицы, ни излучение. В соответствии с общей теорией относительности характерный размер черной дыры определяется гравитационным радиусом: R g =2GM/c 2 , где М – масса объекта, с – скорость света в вакууме, G – постоянная тяготения. Гравитационный радиус Земли равен 9 мм, Солнца 3 км. Границу области, за которую не выходит свет, называют горизонтом событий черной дыры. У вращающихся черных дыр радиус горизонта событий меньше гравитационного радиуса. Особый интерес вызывает возможность захвата черной дырой тел, прилетающих из бесконечности.

Теория допускает существование черных дыр массой 3 –50 масс Солнца, образующихся на поздних стадиях эволюции массивных звезд с массой более 3 масс Солнца, сверхмассивных черных дыр в ядрах галактик массой в миллионы и миллиарды масс Солнца, первичных (реликтовых) черных дыр, формировавшихся на ранних стадиях эволюции Вселенной. До наших дней должны были дожить реликтовые черные дыры массой более 10 15 г (масса средней горы на Земле) из-за действия механизма квантового испарения черных дыр, предложенного С. Хокингом (S.W.Hawking).

Астрономы обнаруживают черные дыры по мощному рентгеновскому излучению. Примером такого типа звезд является мощный рентгеновский источник Лебедь Х-1, масса которого превышает 10М с. Часто черные дыры встречаются в рентгеновских двойных звездных системах. Уже обнаружены десятки черных дыр звездной массы в таких системах (m ч.д. = 4-15 М с). По эффектам гравитационного линзирования открыто несколько одиночных черных дыр звездной массы (m ч.д. =6-8 М с). В случае тесной двойной звезды наблюдается явление аккреции – перетекание плазмы с поверхности обычной звезды под действием гравитационных сил на черную дыру. Вещество, перетекающее на черную дыру, обладает моментом импульса. Поэтому плазма образует вращающийся диск вокруг черной дыры. Температура газа в этом вращающемся диске может достигать 10 млн градусов. При этой температуре газ излучает в рентгеновском диапазоне. По этому излучению можно определить наличие в данном месте черной дыры.

Особый интерес представляют сверхмассивные черные дыры в ядрах галактик. На основании изучения рентгеновского изображения центра нашей Галактики, полученного с помощью спутника CHANDRA, установлено наличие сверхмассивной черной дыры, масса которой в 4 млн. раз превышает массу Солнца. В результате последних исследований американским астрономам удалось обнаружить уникальную сверхтяжелую черную дыру, расположенную в центре очень отдаленной галактики, масса которой в 10 млрд. раз превышает массу Солнца. Для того чтобы достичь таких невообразимо огромных размеров и плотности, черная дыра должна была формироваться на протяжении многих миллиардов лет, непрерывно притягивая и поглощая материю. Ученые оценивают ее возраст в 12,7 млрд лет, т.е. она начала формироваться примерно через один миллиард лет после Большого взрыва. К настоящему времени обнаружено более 250 сверхмассивных черных дыр в ядрах галактик (m ч.д. =(10 6 – 10 9) М с).

С эволюцией звезд тесно связан вопрос о происхождении химических элементов. Если водород и гелий являются элементами, которые остались от ранних стадий эволюции расширяющейся Вселенной, то более тяжелые химические элементы могли образоваться только в недрах звезд при термоядерных реакциях. Внутри звезд при термоядерных реакциях может образоваться до 30 химических элементов (по железо включительно).

По своему физическому состоянию звезды можно разделить на нормальные и вырожденные. Первые состоят в основном из вещества малой плотности, в их недрах идут термоядерные реакции синтеза. К вырожденным звездам относятся белые карлики и нейтронные звезды, они представляют собой конечную стадию эволюции звезд. Реакции синтеза в них закончились, а равновесие поддерживается квантово-механическими эффектами вырожденных фермионов: электронов в белых карликах и нейтронов в нейтронных звездах. Белые карлики, нейтронные звезды и черные дыры объединяют общим названием «компактные остатки».

В конце эволюции в зависимости от массы звезда либо взрывается, либо сбрасывает более спокойно вещество, уже обогащенное тяжелыми химическими элементами. При этом образуются остальные элементы периодической системы. Из обогащенной тяжелыми элементами межзвездной среды образуются звезды следующих поколений. Например, Солнце – звезда второго поколения, образовавшаяся из вещества, уже однажды побывавшего в недрах звезд и обогащенного тяжелыми элементами. Поэтому о возрасте звезд можно судить по их химическому составу, определенному методом спектрального анализа.

Жизненный цикл звезд

Обычная звезда выделяет энергию за счет превращения водорода в гелий в ядерной печи, находящейся в ее сердцевине. После того как звезда израсходует водород в центре, он начинает перегорать в оболочке звезды, которая увеличивается в размере, разбухает. Размер звезды возрастает, температура ее падает. Этот процесс порождает красных гигантов и сверхгигантов. Продолжительность жизни каждой звезды определяется ее массой. Массивные звезды заканчивают свой жизненный цикл взрывом. Звезды, подобные Солнцу, сжимаются, превращаясь в плотные белые карлики. В процессе превращения из красного гиганта в белого карлика звезда может сбросить свои наружные слои, как легкую газовую оболочку, обнажив ядро.

Из книги ЧЕЛОВЕК И ЕГО ДУША. Жизнь в физическом теле и астральном мире автора Иванов Ю М

Из книги Большая Советская Энциклопедия (ЖИ) автора БСЭ

Из книги Путешественники автора Дорожкин Николай

Из книги Экономика недвижимости автора Бурханова Наталья

Сложный жизненный маршрут Отношение наших отечественных учёных к Свену Гедину претерпевало значительные изменения. Причины кроются как в характере самого Гедина, так и в политических ситуациях его времени. С юности зная русский язык и испытывая симпатии к России и её

Из книги Финансы: Шпаргалка автора Автор неизвестен

4. Жизненный цикл объектов недвижимого имущества Так как объекты недвижимого имущества в течение времени своего существования подвергаются экономическим, физическим, правовым изменения, то любая недвижимая вещь (за исключением земли) проходит следующие стадии

Из книги Все обо всем. Том 5 автора Ликум Аркадий

47. ВОЗДЕЙСТВИЕ ФИНАНСОВ НА ЖИЗНЕННЫЙ УРОВЕНЬ НАСЕЛЕНИЯ Социально-экономическая сущность финансовых отношений состоит в исследовании вопроса, за счет кого государство получает финансовые ресурсы и в чьих интересах используются эти средства.Значительная часть

Из книги Организационное поведение: Шпаргалка автора Автор неизвестен

Далеко ли до звезд? Во Вселенной есть звезды, которые находятся так далеко от нас, что у нас даже нет возможности узнать расстояние до них или установить их количество. Но как далека от Земли ближайшая звезда? Расстояние от Земли до Солнца 150 000 000 километров. Так как свет

Из книги Маркетинг: Шпаргалка автора Автор неизвестен

50. ЖИЗНЕННЫЙ ЦИКЛ ОРГАНИЗАЦИИ Широко распространено понятие жизненного цикла организации – ее изменения с определенной последовательностью состояний при взаимодействии с окружающей средой. Существуют определенные этапы, через которые проходят организации, и

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

45. ЖИЗНЕННЫЙ ЦИКЛ ТОВАРА Жизненный цикл товара – это изменение объема продаж и прибылей на протяжении времени его жизни. Товар имеет стадию зарождения, роста, зрелости и конец – «смерть», уход.1. Стадия «разработка и вывод на рынок». Это период инвестиций в маркетинговые

Из книги 200 знаменитых отравлений автора Анцышкин Игорь

2.7. Клетка – генетическая единица живого. Хромосомы, их строение (форма и размеры) и функции. Число хромосом и их видовое постоянство. Особенности соматических и половых клеток. Жизненный цикл клетки: интерфаза и митоз. Митоз – деление соматических клеток. Мейоз. Фазы

Из книги Краткий справочник необходимых знаний автора Чернявский Андрей Владимирович

4.5.1. Жизненный цикл водорослей Отдел Зеленые водоросли включает в себя одноклеточные колониальные и многоклеточные растения. Всего около 13 тыс. видов. К одноклеточным относятся хламидомонада, хлорелла. Колонии образованы клетками вольвокса и пандорины. К многоклеточным

Из книги Популярный звездочет автора Шалашников Игорь

ЖЕРТВЫ ЗВЕЗД Итальянский математик Кардано был и философом, и медиком, и астрологом. Сперва он занимался исключительно медициной, но с 1534 года состоял профессором математики в Милане и Болонье; однако для увеличения своих скромных доходов профессор не оставлял

Из книги Новейший философский словарь автора Грицанов Александр Алексеевич

25 ближайших звезд mV - визуальная звездная величина; r - расстояние до звезды, пк; L - светимость (мощность излучения) звезды, выражена в единицах светимости Солнца (3,86–1026

Из книги Я познаю мир. Вирусы и болезни автора Чирков С. Н.

Виды звезд В сравнении с другими звездами во Вселенной Солнце является звездой-карликом и относится к категории нормальных звезд, в недрах которых происходит превращение водорода в гелий. Так или иначе, но виды звезд примерно описывают жизненный цикл одной отдельно

Из книги автора

"ЖИЗНЕННЫЙ МИР" (Lebenswelt) - одно из центральных понятий поздней феноменологии Гуссерля, сформулированное им в результате преодоления узкого горизонта строго феноменологического метода за счет обращения к проблемам мировых связей сознания. Такое включение "мировой"

Из книги автора

Жизненный цикл вируса Каждый вирус проникает в клетку своим, только ему свойственным путем. Проникнув, он должен прежде всего снять верхнюю одежду, чтобы обнажить, хотя бы частично, свою нуклеиновую кислоту и начать ее копирование.Работа вируса хорошо организована.

Похожие статьи